The purpose of this article is to propose a new method to define and calculate path integrals over metrics on a Kahler manifold. The main idea is to use finite dimensional spaces of Bergman metrics, as an approximation to the full space of Miller metrics. We use the theory of large deviations to decide when a sequence of probability measures on the spaces of Bergman metrics tends to a limit measure on the space of all Miller metrics. Several examples are considered. (C) 2012 Elsevier B.V. All rights reserved.
机构:
UCL, Dept Math, Gower St, London WC1E 6BT, England
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, JapanUCL, Dept Math, Gower St, London WC1E 6BT, England
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
Rossi, Federico Alberto
Tomassini, Adriano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Parma, Dipartimento Matemat, I-43124 Parma, ItalyUniv Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
机构:
Univ Sci & Technol China, Sch Math, Hefei, Peoples R ChinaUniv Sci & Technol China, Sch Math, Hefei, Peoples R China
Huang, Pengfei
Hwu, Chi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math, Hefei, Peoples R China
Kyoto Univ, Res Inst Math Sci, Kyoto, JapanUniv Sci & Technol China, Sch Math, Hefei, Peoples R China