Graphene as a local probe to investigate near-field properties of plasmonic nanostructures

被引:14
|
作者
Wasserroth, Soeren [1 ]
Bisswanger, Timo [1 ,6 ]
Mueller, Niclas S. [1 ]
Kusch, Patryk [1 ]
Heeg, Sebastian [2 ,3 ]
Clark, Nick [3 ]
Schedin, Fredrik [4 ]
Gorbachev, Roman [5 ]
Reich, Stephanie [1 ]
机构
[1] Free Univ Berlin, Inst Expt Phys, D-14195 Berlin, Germany
[2] Swiss Fed Inst Technol, Photon Lab, CH-8093 Zurich, Switzerland
[3] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[4] Univ Manchester, Natl Graphene Inst, Manchester M13 9PL, Lancs, England
[5] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[6] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
基金
英国工程与自然科学研究理事会;
关键词
ENHANCED RAMAN-SCATTERING; SERS;
D O I
10.1103/PhysRevB.97.155417
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Light interacting with metallic nanoparticles creates a strongly localized near-field around the particle that enhances inelastic light scattering by several orders of magnitude. Surface-enhanced Raman scattering describes the enhancement of the Raman intensity by plasmonic nanoparticles. We present an extensive Raman characterization of a plasmonic gold nanodimer covered with graphene. Its two-dimensional nature and energy-independent optical properties make graphene an excellent material for investigating local electromagnetic near-fields. We show the localization of the near-field of the plasmonic dimer by spatial Raman measurements. Energy-and polarization-dependent measurements reveal the local near-field resonance of the plasmonic system. To investigate the far-field resonance we perform dark-field spectroscopy and find that near-field and far-field resonance energies differ by 170 meV, much more than expected from the model of a damped oscillator (40 meV).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Near-field chemical mapping of gold nanostructures using a functionalized scanning probe
    Dab, C.
    Awada, C.
    Merlen, A.
    Ruediger, A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (46) : 31063 - 31071
  • [32] Near-field asymmetries in plasmonic resonators
    Aksyuk, Vladimir
    Lahiri, Basudev
    Holland, Glenn
    Centrone, Andrea
    NANOSCALE, 2015, 7 (08) : 3634 - 3644
  • [33] Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures
    Dregely, Daniel
    Neubrech, Frank
    Duan, Huigao
    Vogelgesang, Ralf
    Giessen, Harald
    NATURE COMMUNICATIONS, 2013, 4
  • [34] Near-field Study of Plasmonic Oligomers
    Weber, Thorsten
    von Cube, Felix
    Irsen, Stephan
    Linden, Stefan
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [35] Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures
    Daniel Dregely
    Frank Neubrech
    Huigao Duan
    Ralf Vogelgesang
    Harald Giessen
    Nature Communications, 4
  • [36] Plasmonic nanostructures in aperture-less scanning near-field optical microscopy (aSNOM)
    Vogelgesang, Ralf
    Dorfmueller, Jens
    Esteban, Ruben
    Weitz, R. Thomas
    Dmitriev, Alexandre
    Kern, Klaus
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (10): : 2255 - 2260
  • [37] Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems
    Ilic, Ognjen
    Jablan, Marinko
    Joannopoulos, John D.
    Celanovic, Ivan
    Soljacic, Marin
    OPTICS EXPRESS, 2012, 20 (10): : A366 - A384
  • [38] Near-field spectroscopy of disordered nanostructures
    Lienau, C
    Intonti, F
    Guenther, T
    Emeliani, V
    Elsaesser, T
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2002, 234 (01): : 453 - 462
  • [39] Near-Field Radiative Cooling of Nanostructures
    Guha, Biswajeet
    Otey, Clayton
    Poitras, Carl B.
    Fan, Shanhui
    Lipson, Michal
    NANO LETTERS, 2012, 12 (09) : 4546 - 4550
  • [40] Photothermal Heating Using a Near-Field Plasmonic Probe, Application in NFO-CVD
    Yazdanfar, Payam
    Heydarian, Hesam
    Rashidian, Bizhan
    2018 5TH INTERNATIONAL CONFERENCE ON MILLIMETER-WAVE AND TERAHERTZ TECHNOLOGIES (MMWATT), 2018, : 94 - 96