Improving Recency Ranking Using Twitter Data

被引:14
作者
Chang, Yi
Dong, Anlei
Kolari, Pranam
Zhang, Ruiqiang
Inagaki, Yoshiyuki
Diaz, Fernanodo
Zha, Hongyuan [1 ]
Liu, Yan [2 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Univ So Calif, Los Angeles, CA 90089 USA
关键词
Algorithms; Experimentation; Recency ranking; Twitter; tweet ranking;
D O I
10.1145/2414425.2414429
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In Web search and vertical search, recency ranking refers to retrieving and ranking documents by both relevance and freshness. As impoverished in-links and click information is the the biggest challenge for recency ranking, we advocate the use of Twitter data to address the challenge in this article. We propose a method to utilize Twitter TinyURL to detect fresh and high-quality documents, and leverage Twitter data to generate novel and effective features for ranking. The empirical experiments demonstrate that the proposed approach effectively improves a commercial search engine for both Web search ranking and tweet vertical ranking.
引用
收藏
页数:24
相关论文
共 44 条
  • [1] Agichtein E., 2006, P 29 ANN INT ACM SIG
  • [2] [Anonymous], P ACM INT C MULT
  • [3] [Anonymous], P 6 INT C INF SYST C
  • [4] [Anonymous], J AM SOC INF SCI TEC
  • [5] [Anonymous], P INT AAAI C WEBL SO
  • [6] [Anonymous], P 3 ACM INT C WEB SE
  • [7] [Anonymous], P 19 INT C WORLD WID
  • [8] [Anonymous], P INT C MACH LEARN
  • [9] [Anonymous], P 33 ANN INT ACM SIG
  • [10] [Anonymous], NIPS WORKSH COMP SOC