Activated carbon preparation from tobacco stems by KOH activation at different activation temperatures and KOH/char mass ratios were investigated in this study. The effects of preparation parameters on activated carbon pore structure, morphometrics, microcrystallinities, and surface functional groups were characterized by N-2 adsorption, SEM, XRD, and FTIR technologies, respectively. The optimum preparation condition of activated carbon was activation temperature of 850 degrees C, and KOH/char mass ratio of 2. Under this condition, the BET surface area of 2215 m(2)/g, and the pore volume of 1.343 cm(3)/g can be obtained. Prepared activated carbon showed clearly honeycomb holes, and a predominated amorphous structure. With increase of activation temperature and KOH/char mass ratio, decrease of surface oxygen functional group, and aromatization of the carbon structure was found. The activated carbon was subject to PH3 purification, and the maximum PH3 adsorption capacity of 253 mg/g can be realized based on well prepared KOH-AC with modification of 2.5% Cu. It seems that the activated carbon produced from chemical activation of tobacco stem would be an effective and alternative adsorbent for PH3 adsorption because of its high surface area, adsorption capacity, and low cost.