On k-ordered Hamiltonian graphs

被引:0
作者
Kierstead, HA [1 ]
Sárközy, GN
Selkow, SM
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
[3] MSRI, Berkeley, CA USA
关键词
Hamiltonian graph; k-ordered;
D O I
10.1002/(SICI)1097-0118(199909)32:1<17::AID-JGT2>3.3.CO;2-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Hamiltonian graph G of order a is k-ordered, 2 less than or equal to k less than or equal to n, if for every sequence v(1), v(2),..., v(k), of k distinct vertices of G, there exists a Hamiltonian cycle that encounters vi, v(2),..., v(k) in this order. Define f(k, n) as the smallest integer m for which any graph on a vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if a is sufficiently large in terms of k. Let g(k, n) = [n/2] + [k/2] - 1. More precisely, we show that f(k, n) - g(k, n) if n greater than or equal to 11k - 3 Furthermore, we show that f(k, n) greater than or equal to g(k, n) for any n greater than or equal to 2k. Finally we show that f(k, n) > g(k, n) if 2k less than or equal to n less than or equal to 3k - 6. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [41] One sufficient condition for Hamiltonian graphs involving distances
    Kewen Zhao
    Yue Lin
    Ping Zhang
    [J]. Russian Mathematics, 2012, 56 (4) : 38 - 43
  • [42] A NOTE ON THE SONG-ZHANG THEOREM FOR HAMILTONIAN GRAPHS
    Zhao, Kewen
    Gould, Ronald J.
    [J]. COLLOQUIUM MATHEMATICUM, 2010, 120 (01) : 63 - 75
  • [43] Hamiltonian graphs of given order and minimum algebraic connectivity
    Guo, Shu-Guang
    Zhang, Rong
    Yu, Guanglong
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03) : 459 - 468
  • [44] Matching number, Hamiltonian graphs and magnetic Laplacian matrices
    Fabila-Carrasco, John Stewart
    Lledo, Fernando
    Post, Olaf
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 642 : 86 - 100
  • [45] All 4-connected line graphs of claw free graphs are hamiltonian connected
    Kriesell, M
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (02) : 306 - 315
  • [46] A Characterization of PM-compact Hamiltonian Bipartite Graphs
    Xiu-mei WANG
    Jin-jiang YUAN
    Yi-xun LIN
    [J]. ActaMathematicaeApplicataeSinica, 2015, 31 (02) : 313 - 324
  • [47] Nowhere-zero Unoriented Flows in Hamiltonian Graphs
    Akbari, S.
    Daemi, A.
    Hatami, O.
    Javanmard, A.
    Mehrabian, A.
    [J]. ARS COMBINATORIA, 2015, 120 : 51 - 63
  • [48] On the domination number of Hamiltonian graphs with minimum degree six
    Xing, Hua-Ming
    Hattingh, Johannes H.
    Plummer, Andrew R.
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (10) : 1037 - 1040
  • [49] Hamiltonian Cycles in Directed Toeplitz Graphs-Part 2
    Malik, Shabnam
    [J]. ARS COMBINATORIA, 2014, 116 : 303 - 319
  • [50] Hamiltonian properties of locally connected graphs with bounded vertex degree
    Gordon, Valery S.
    Orlovich, Yury L.
    Potts, Chris N.
    Strusevich, Vitaly A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) : 1759 - 1774