On k-ordered Hamiltonian graphs

被引:0
|
作者
Kierstead, HA [1 ]
Sárközy, GN
Selkow, SM
机构
[1] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
[2] Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USA
[3] MSRI, Berkeley, CA USA
关键词
Hamiltonian graph; k-ordered;
D O I
10.1002/(SICI)1097-0118(199909)32:1<17::AID-JGT2>3.3.CO;2-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Hamiltonian graph G of order a is k-ordered, 2 less than or equal to k less than or equal to n, if for every sequence v(1), v(2),..., v(k), of k distinct vertices of G, there exists a Hamiltonian cycle that encounters vi, v(2),..., v(k) in this order. Define f(k, n) as the smallest integer m for which any graph on a vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if a is sufficiently large in terms of k. Let g(k, n) = [n/2] + [k/2] - 1. More precisely, we show that f(k, n) - g(k, n) if n greater than or equal to 11k - 3 Furthermore, we show that f(k, n) greater than or equal to g(k, n) for any n greater than or equal to 2k. Finally we show that f(k, n) > g(k, n) if 2k less than or equal to n less than or equal to 3k - 6. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [1] A Note on k-Step Hamiltonian Graphs
    Abd Aziz, N. A.
    Rad, N. J.
    Kamarulhaili, H.
    Hasni, R.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 87 - 93
  • [2] Bounds for the Independence Number in k-Step Hamiltonian Graphs
    Abd Aziz, Noor A'lawiah
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    Hasni, Roslan
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2018, 26 (01) : 15 - 28
  • [3] On chromatic number and clique number in k-step Hamiltonian graphs
    Aziz, Noor A'lawiah Abd
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    Hasni, Roslan
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (01) : 37 - 49
  • [4] Hamiltonian character graphs
    Ebrahimi, Mandi
    Iranmanesh, Ali
    Hosseinzadeh, Mohammad Ali
    JOURNAL OF ALGEBRA, 2015, 428 : 54 - 66
  • [5] On degree conditions of semi-balanced k-partite Hamiltonian graphs
    Yokomura, Kuniharu
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (08)
  • [6] HAMILTONIAN PROPERTIES OF GRID GRAPHS
    ZAMFIRESCU, C
    ZAMFIRESCU, T
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (04) : 564 - 570
  • [7] Connectivity and Hamiltonian Connectedness of Graphs
    朱永津
    王中兴
    Chinese Science Bulletin, 1993, (01) : 15 - 18
  • [8] Exploration of Faulty Hamiltonian Graphs
    Caissy, David
    Pelc, Andrzej
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2016, 27 (07) : 809 - 827
  • [9] Hamiltonian properties of Toeplitz graphs
    vanDal, R
    Tijssen, G
    Tuza, Z
    vanderVeen, JAA
    Zamfirescu, C
    Zamfirescu, T
    DISCRETE MATHEMATICS, 1996, 159 (1-3) : 69 - 81
  • [10] Network reliability in hamiltonian graphs
    Llagostera, Pol
    Lopez, Nacho
    Comas, Carles
    DISCRETE OPTIMIZATION, 2021, 41