Filtering the Continuous Wavelet Transform Using Hyperbolic Triangulations

被引:3
|
作者
Koliander, Guenther [1 ]
Abreu, Luis Daniel [1 ]
Haimi, Antti [1 ]
Romero, Jose Luis [1 ,2 ]
机构
[1] Austrian Acad Sci, Acoust Res Inst, Wohllebengasse 12-14, A-1040 Vienna, Austria
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
来源
2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA) | 2019年
基金
奥地利科学基金会;
关键词
Wavelet transform; hyperbolic geometry; Gaussian analytic functions; TIME-FREQUENCY; REASSIGNMENT; ZEROS;
D O I
10.1109/sampta45681.2019.9030834
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a methodology that detects signal components of a signal in white noise based on a hyperbolic triangulation of its wavelet transform (WT). The theoretical background is a connection between analyticity inducing wavelets and Gaussian analytic functions. This relation allows us to obtain some useful details on the random distribution of the zeros of the wavelet transformed signal. We apply our method to some acoustic signals and observe that many signal components are found but as predicted by the theory there is no guarantee to find all signal components.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] MULTIRESOLUTIONAL FILTERING USING WAVELET TRANSFORM
    HONG, L
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1993, 29 (04) : 1244 - 1251
  • [2] Nonlinear filtering using the wavelet transform
    Chun, J
    Chun, J
    SIGNAL PROCESSING, 2000, 80 (03) : 441 - 450
  • [3] Scaling and filtering of a sampled signal by the continuous wavelet transform
    Chan, YT
    Ho, KC
    Ching, PC
    PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1998, : 345 - 348
  • [4] Localized Denoising Filtering Using the Wavelet Transform
    M. Fedi
    L. Lenarduzzi
    R. Primiceri
    T. Quarta
    pure and applied geophysics, 2000, 157 : 1463 - 1491
  • [5] Localized denoising filtering using the wavelet transform
    Fedi, M
    Lenarduzzi, L
    Primiceri, R
    Quarta, T
    PURE AND APPLIED GEOPHYSICS, 2000, 157 (09) : 1463 - 1491
  • [6] An interferogram filtering method using wavelet transform
    Yanjie, Z
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 4564 - 4566
  • [7] Easy Path Wavelet Transform on Triangulations of the Sphere
    Plonka, Gerlind
    Rosca, Daniela
    MATHEMATICAL GEOSCIENCES, 2010, 42 (07) : 839 - 855
  • [8] Easy Path Wavelet Transform on Triangulations of the Sphere
    Gerlind Plonka
    Daniela Roşca
    Mathematical Geosciences, 2010, 42 : 839 - 855
  • [9] Fatigue Data Analysis using Continuous Wavelet Transform and Discrete Wavelet Transform
    Abdullah, S.
    Sahadan, S. N.
    Nuawi, M. Z.
    Nopiah, Z. M.
    FRACTURE AND STRENGTH OF SOLIDS VII, PTS 1 AND 2, 2011, 462-463 : 461 - 466
  • [10] Continuous wavelet transform with the Shannon wavelet from the point of view of hyperbolic partial differential equationsНепрерывное вейвлет-преобразование с вейвлетом Шенпопа с точки зрения гиперболических дифференциальных уравнений в частных производных
    Eugene B. Postnikov
    Vineet K. Singh
    Analysis Mathematica, 2015, 41 (3) : 199 - 206