Study on geometric structures on Lie algebroids with optimal control applications

被引:2
作者
Peyghan, Esmaeil [1 ]
Popescu, Liviu [2 ]
机构
[1] Arak Univ, Dept Math, Fac Sci, Arak 3815688349, Iran
[2] Univ Craiova, Fac Econ & Business Adm, Dept Stat & Econ Informat, 13 Al I Cuza St, Craiova 200585, Romania
关键词
Berwald and Yano-derivatives; Covariant derivative; Douglas tensor; Lie algebroid; Optimal control;
D O I
10.1080/14029251.2020.1819604
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct rho()-covariant pound derivatives in pi*pi as the generalization of covariant derivative in pi*pi to E- pound pi. Moreover, we introduce Berwald and Yano derivatives as two important classes of rho()-covariant pound derivatives in pi*pi and we study properties of them. Finally, we solve an optimal control problem using some geometric structures and Pontryagin Maximum Principle on Lie algebroids.
引用
收藏
页码:550 / 580
页数:31
相关论文
共 24 条
[21]   On the projective geometry of sprays [J].
Szilasi, J ;
Vattamány, S .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2000, 12 (02) :185-206
[22]   Clifford-Finsler algebroids and nonholonomic Einstein-Dirac structures [J].
Vacaru, Sergiu I. .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (09)
[23]   Nonholonomic algebroids, Finsler geometry, and Lagrange-Hamilton spaces [J].
Vacaru, Sergiu I. .
MATHEMATICAL SCIENCES, 2012, 6 (01)
[24]  
Weinstein A., 1996, FIELDS I COMMUN, V7, P207