Study on geometric structures on Lie algebroids with optimal control applications

被引:2
作者
Peyghan, Esmaeil [1 ]
Popescu, Liviu [2 ]
机构
[1] Arak Univ, Dept Math, Fac Sci, Arak 3815688349, Iran
[2] Univ Craiova, Fac Econ & Business Adm, Dept Stat & Econ Informat, 13 Al I Cuza St, Craiova 200585, Romania
关键词
Berwald and Yano-derivatives; Covariant derivative; Douglas tensor; Lie algebroid; Optimal control;
D O I
10.1080/14029251.2020.1819604
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct rho()-covariant pound derivatives in pi*pi as the generalization of covariant derivative in pi*pi to E- pound pi. Moreover, we introduce Berwald and Yano derivatives as two important classes of rho()-covariant pound derivatives in pi*pi and we study properties of them. Finally, we solve an optimal control problem using some geometric structures and Pontryagin Maximum Principle on Lie algebroids.
引用
收藏
页码:550 / 580
页数:31
相关论文
共 24 条
[1]  
Anastasiei M., 2006, BSG P, V13, P10
[2]   Generalized gradients on Lie algebroids [J].
Balcerzak, Bogdan ;
Pierzchalski, Antoni .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (03) :319-337
[3]  
Cortes J., 2004, IMA Journal of Mathematical Control and Information, V21, P457, DOI 10.1093/imamci/21.4.457
[4]   NONHOLONOMIC LAGRANGIAN SYSTEMS ON LIE ALGEBROIDS [J].
Cortes, Jorge ;
de Leon, Manuel ;
Carlos Marrero, Juan ;
Martinez, Eduardo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (02) :213-271
[5]  
Crampin M, 2000, PUBL MATH-DEBRECEN, V57, P455
[6]   Lagrangian submanifolds and dynamics on Lie algebroids [J].
de León, M ;
Marrero, JC ;
Martínez, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (24) :R241-R308
[7]   Lie algebroids, holonomy and characteristic classes [J].
Fernandes, RL .
ADVANCES IN MATHEMATICS, 2002, 170 (01) :119-179
[8]   Tangent and cotangent lifts and graded Lie algebras associated with Lie algebroids [J].
Grabowski, J ;
Urbanski, P .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1997, 15 (05) :447-486
[9]  
Grabowski J., 1997, Reports on Mathematical Physics, V40, P195, DOI 10.1016/S0034-4877(97)85916-2
[10]   Lagrangian mechanics on Lie algebroids [J].
Martínez, E .
ACTA APPLICANDAE MATHEMATICAE, 2001, 67 (03) :295-320