Equiconvergence of spectral decompositions of Hill operators

被引:2
作者
Djakov, P. B. [1 ]
Mityagin, B. S.
机构
[1] Sabanci Univ, Istanbul, Turkey
关键词
SCHRODINGER-OPERATORS; EXPANSION;
D O I
10.1134/S1064562412040333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study in various functional spaces the equiconvergence of spectral decompositions of the Hill operator L = -d (2)/dx (2) + v(x), x a L (1)([0, pi], with H (per) (-1) -potential and the free operator L (0) = -d (2)/dx (2), subject to periodic, antiperiodic or Dirichlet boundary conditions. In particular, we prove that parallel to S-N - S-N(0) : L-a -> L-b parallel to -> 0 if 1 < a <= b < infinity, 1/a - 1/b < 1/2, where S (N) and S (N) (0) are the N-th partial sums of the spectral decompositions of L and L (0). Moreover, if v a H (-alpha) with 1/2 < alpha < 1 and , then we obtain the uniform equiconvergence aEuro-S (N) -S (N) (0) : L (a) -> L (a)aEuro- -> 0 as N -> a.
引用
收藏
页码:542 / 544
页数:3
相关论文
共 16 条
[1]   Instability zones of periodic 1-dimensional Schrodinger and Dirac operators [J].
Djakov, P. ;
Mityagin, B. S. .
RUSSIAN MATHEMATICAL SURVEYS, 2006, 61 (04) :663-766
[2]   Spectral gap asymptotics of one-dimensional Schrodinger operators with singular periodic potentials [J].
Djakov, P. ;
Mityagin, B. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (3-4) :265-273
[3]  
Djakov P. B., ARXIV11106696
[4]   Fourier Method for One-dimensional Schrodinger Operators with Singular Periodic Potentials [J].
Djakov, Plamen ;
Mityagin, Boris .
TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 :195-+
[5]  
Djakov P, 2009, DYNAM PART DIFFER EQ, V6, P95
[6]  
Khromov A.P., 1975, DIFFERENTIAL EQUAT 2, V5, P3
[7]  
Marchenko, 1986, STURM LIOUVILLE OPER
[8]  
Naimark M.A., 1969, Linear Differential Operators, V2nd
[9]   Equiconvergence of eigenfunction expansions for Sturm-Liouville operators with a distributional potential [J].
Sadovnichaya, I. V. .
SBORNIK MATHEMATICS, 2010, 201 (09) :1307-1322
[10]   On the Equiconvergence Rate with the Fourier Integral of the Spectral Expansion Associated with the Self-Adjoint Extension of the Sturm-Liouville Operator with Uniformly Locally Integrable Potential [J].
Sadovnichaya, I. V. .
DIFFERENTIAL EQUATIONS, 2009, 45 (04) :520-525