Fuzzy Geometry of Commutative Spaces and Quantum Dynamics

被引:1
作者
Mayburov, S. N. [1 ]
机构
[1] Lebedev Inst Phys, Leninski pr 53, Moscow, Russia
来源
4TH INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS | 2016年 / 126卷
关键词
REPRESENTATIONS;
D O I
10.1051/epjconf/201612605009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fuzzy topology and geometry considered as the possible mathematical framework for novel quantum-mechanical formalism. In such formalism the states of massive particle m correspond to the elements of fuzzy manifold called fuzzy points. Due to the manifold weak topology, m space coordinate x acquires principal uncertainty sigma(x) and described by the positive, normalized density w((r) over right arrow, t) in 3-dimensional case. It's shown that the evolution of m state on such 3-dimensional manifold corresponds to Shroedinger dynamics of massive quantum particle.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Dynamics of Weighted Composition Operators on Spaces of Entire Functions of Exponential and Infraexponential Type [J].
Beltran-Meneu, Maria J. ;
Jorda, Enrique .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
[42]   Dirac operator on the quantum fuzzy four-sphere SqF4 [J].
Lotfizadeh, M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (01)
[43]   Quantum-Classical Correspondence on Associated Vector Bundles Over Locally Symmetric Spaces [J].
Kuester, Benjamin ;
Weich, Tobias .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (11) :8225-8296
[44]   From congruent to non-congruent spaces: Dynamics of Bedouin production of space in Israel [J].
Karplus, Yuval ;
Meir, Avinoam .
GEOFORUM, 2014, 52 :180-192
[45]   An operator-theoretic approach to invariant integrals on quantum homogeneous SUn,1-spaces [J].
Kuersten, Klaus-Detlef ;
Wagner, Elmar .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2007, 43 (01) :1-37
[46]   (q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces [J].
Awata, Hidetoshi ;
Kanno, Hiroaki ;
Mironov, Andrei ;
Morozov, Alexei ;
Suetake, Kazuma ;
Zenkevich, Yegor .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03)
[47]   On Nonlinear Quantum Mechanics, Noncommutative Phase Spaces, Fractal-Scale Calculus and Vacuum Energy [J].
Castro, Carlos .
FOUNDATIONS OF PHYSICS, 2010, 40 (11) :1712-1730
[48]   Quantum Dynamics in Phase Space using Projected von Neumann Bases [J].
Machnes, Shai ;
Assemat, Elie ;
Larsson, Henrik R. ;
Tannor, David J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (19) :3296-3308
[49]   TANNAKA-KREIN DUALITY FOR COMPACT QUANTUM HOMOGENEOUS SPACES. I. GENERAL THEORY [J].
De Commer, Kenny ;
Yamashita, Makoto .
THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 :1099-1138
[50]   AN OPERATOR-THEORETIC APPROACH TO INVARIANT INTEGRALS ON QUANTUM HOMOGENEOUS SLn+1(R)-SPACES [J].
Osuna Castro, Osvaldo ;
Wagner, Elmar .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (01)