Fuzzy Geometry of Commutative Spaces and Quantum Dynamics

被引:1
|
作者
Mayburov, S. N. [1 ]
机构
[1] Lebedev Inst Phys, Leninski pr 53, Moscow, Russia
来源
4TH INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS | 2016年 / 126卷
关键词
REPRESENTATIONS;
D O I
10.1051/epjconf/201612605009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fuzzy topology and geometry considered as the possible mathematical framework for novel quantum-mechanical formalism. In such formalism the states of massive particle m correspond to the elements of fuzzy manifold called fuzzy points. Due to the manifold weak topology, m space coordinate x acquires principal uncertainty sigma(x) and described by the positive, normalized density w((r) over right arrow, t) in 3-dimensional case. It's shown that the evolution of m state on such 3-dimensional manifold corresponds to Shroedinger dynamics of massive quantum particle.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On classical, fuzzy classical, quantum, and fuzzy quantum systems
    Seising, Rudolf
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1338 - 1342
  • [2] Non-commutative Weitzenbock geometry, gerbe modules and WZW branes
    Recknagel, Andreas
    Suszek, Rafal R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02):
  • [3] GEOMETRY OF SYMMETRIC SPACES OF TYPE EIII
    Petrov, V. A.
    Semenov, A. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2024, : 1055 - 1061
  • [4] Infinite Dimensional Multiplicity Free Spaces II: Limits of Commutative Nilmanifolds
    Wolf, Joseph A.
    NEW DEVELOPMENTS IN LIE THEORY AND GEOMETRY, 2009, 491 : 179 - 208
  • [5] A new realization of quantum geometry
    Bahr, Benjamin
    Dittrich, Bianca
    Geiller, Marc
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (14)
  • [6] QUANTUM TEICHMULLER SPACES AND QUANTUM TRACE MAP
    Le, Thang T. Q.
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2019, 18 (02) : 249 - 291
  • [7] Color comparison in fuzzy color spaces
    Manuel Soto-Hidalgo, Jose
    Sanchez, Daniel
    Chamorro-Martinez, Jesus
    Manuel Martinez-Jimenez, Pedro
    FUZZY SETS AND SYSTEMS, 2020, 390 (390) : 160 - 182
  • [8] Classical and quantum Teichmuller spaces
    Vasiliev, A. Yu.
    Sergeev, A. G.
    RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (03) : 435 - 502
  • [9] Algebra and quantum geometry of multifrequency resonance
    Karasev, M. V.
    Novikova, E. M.
    IZVESTIYA MATHEMATICS, 2010, 74 (06) : 1155 - 1204
  • [10] Quantum geometry from higher gauge theory
    Asante, Seth K.
    Dittrich, Bianca
    Girelli, Florian
    Riello, Aldo
    Tsimiklis, Panagiotis
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (20)