A Multi-view Deep Convolutional Neural Networks for Lung Nodule Segmentation

被引:0
|
作者
Wang, Shuo [1 ,2 ,3 ]
Zhou, Mu [4 ]
Gevaert, Olivier [4 ]
Tang, Zhenchao [5 ]
Dong, Di [1 ,2 ,3 ]
Liu, Zhenyu [1 ,2 ,3 ]
Tian, Jie [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Mol Imaging, Inst Automat, Beijing 100190, Peoples R China
[2] Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Stanford Univ, Dept Med, Stanford Ctr Biomed Informat Res BMIR, Stanford, CA 94305 USA
[5] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Shandong, Peoples R China
来源
2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2017年
基金
中国国家自然科学基金;
关键词
PULMONARY NODULES; CT;
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We present a multi-view convolutional neural networks (MV-CNN) for lung nodule segmentation. The MV-CNN specialized in capturing a diverse set of nodule-sensitive features from axial, coronal and sagittal views in CT images simultaneously. The proposed network architecture consists of three CNN branches, where each branch includes seven stacked layers and takes multi-scale nodule patches as input. The three CNN branches are then integrated with a fully connected layer to predict whether the patch center voxel belongs to the nodule. The proposed method has been evaluated on 893 nodules from the public LIDC-IDRI dataset, where ground-truth annotations and CT imaging data were provided. We showed that MV-CNN demonstrated encouraging performance for segmenting various type of nodules including juxta-pleural, cavitary, and non-solid nodules, achieving an average dice similarity coefficient (DSC) of 77.67% and average surface distance (ASD) of 0.24, outperforming conventional image segmentation approaches.
引用
收藏
页码:1752 / 1755
页数:4
相关论文
共 50 条
  • [1] Multi-view Convolutional Recurrent Neural Networks for Lung Cancer Nodule Identification
    Abid, Mian Muhammad Naeem
    Zia, Tehseen
    Ghafoor, Mubeen
    Windridge, David
    NEUROCOMPUTING, 2021, 453 : 299 - 311
  • [2] 3D multi-view convolutional neural networks for lung nodule classification
    Kang, Guixia
    Liu, Kui
    Hou, Beibei
    Zhang, Ningbo
    PLOS ONE, 2017, 12 (11):
  • [3] Multi-view Convolutional Neural Network for lung nodule false positive reduction
    El-Regaily, Salsabil Amin
    Salem, Mohammed Abdel Megeed
    Aziz, Mohamed Hassan Abdel
    Roushdy, Mohamed Ismail
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 162
  • [4] Multi-view Face Detection Using Deep Convolutional Neural Networks
    Farfade, Sachin Sudhakar
    Saberian, Mohammad
    Li, Li-Jia
    ICMR'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2015, : 643 - 650
  • [5] Multi-Crop Convolutional Neural Networks for Fast Lung Nodule Segmentation
    Chen, Quan
    Xie, Wei
    Zhou, Pan
    Zheng, Chuansheng
    Wu, Dapeng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2022, 6 (05): : 1190 - 1200
  • [6] On Multi-view Interpretation of Convolutional Neural Networks
    Khastavaneh, Hassan
    Ebrahimpour-Komleh, Hossein
    2019 IEEE 5TH CONFERENCE ON KNOWLEDGE BASED ENGINEERING AND INNOVATION (KBEI 2019), 2019, : 587 - 591
  • [7] Multi-view classification with convolutional neural networks
    Seeland, Marco
    Maeder, Patrick
    PLOS ONE, 2021, 16 (01):
  • [8] TUMORNET: LUNG NODULE CHARACTERIZATION USING MULTI-VIEW CONVOLUTIONAL NEURAL NETWORK WITH GAUSSIAN PROCESS
    Hussein, Sarfaraz
    Gillies, Robert
    Cao, Kunlin
    Song, Qi
    Bagci, Ulas
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 1007 - 1010
  • [9] Multi-view convolutional neural networks for automated ocular structure and tumor segmentation in retinoblastoma
    Strijbis, Victor I. J.
    de Bloeme, Christiaan M.
    Jansen, Robin W.
    Kebiri, Hamza
    Nguyen, Huu-Giao
    de Jong, Marcus C.
    Moll, Annette C.
    Bach-Cuadra, Merixtell
    de Graaf, Pim
    Steenwijk, Martijn D.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Multi-view convolutional neural networks for automated ocular structure and tumor segmentation in retinoblastoma
    Victor I. J. Strijbis
    Christiaan M. de Bloeme
    Robin W. Jansen
    Hamza Kebiri
    Huu-Giao Nguyen
    Marcus C. de Jong
    Annette C. Moll
    Merixtell Bach-Cuadra
    Pim de Graaf
    Martijn D. Steenwijk
    Scientific Reports, 11