Numerical experiments on dynamo action in sheared and rotating turbulence

被引:49
作者
Yousef, T. A. [1 ,2 ]
Heinemann, T. [1 ]
Rincon, F. [3 ]
Schekochihin, A. A. [2 ]
Kleeorin, N. [4 ]
Rogachevskii, I. [4 ]
Cowley, S. C. [2 ,5 ]
McWilliams, J. C. [6 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Plasma Phys Grp, London SW7 2AZ, England
[3] Univ Toulouse, Lab Astrophys Toulouse Tarbes, CNRS, F-31400 Toulouse, France
[4] Ben Gurion Univ Negev, Dept Mech Engn, IL-84105 Beer Sheva, Israel
[5] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[6] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90095 USA
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
magnetic fields; magnetohydrodynamics (MHD); turbulence;
D O I
10.1002/asna.200811018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Numerical simulations of forced turbulence in elongated shearing boxes are carried out to demonstrate that a nonhelical turbulence in conjunction with a linear shear can give rise to a mean-field dynamo. Exponential growth of magnetic field at scales larger than the outer (forcing) scale of the turbulence is found. Over a range of values of the shearing rate S spanning approximately two orders of magnitude, the growth rate of the magnetic field is proportional to the imposed shear, gamma proportional to S, while the characteristic spatial scale of the field is l(B) proportional to S-1/2. The effect is quite general: earlier results for the nonrotating case by Yousef et al. (2008) are extended to shearing boxes with Keplerian rotation; it is also shown that the shear dynamo mechanism operates both below and above the threshold for the fluctuation dynamo. The apparently generic nature of the shear dynamo effect makes it an attractive object of study for the purpose of understanding the generation of magnetic fields in astrophysical systems. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:737 / 749
页数:13
相关论文
共 50 条
[21]   MEAN-FIELD MODELING OF AN α2 DYNAMO COUPLED WITH DIRECT NUMERICAL SIMULATIONS OF RIGIDLY ROTATING CONVECTION [J].
Masada, Youhei ;
Sano, Takayoshi .
ASTROPHYSICAL JOURNAL LETTERS, 2014, 794 (01)
[22]   Dynamo and hydromagnetic liquid metal experiments [J].
Colgate, S. A. .
ASTRONOMISCHE NACHRICHTEN, 2006, 327 (5-6) :456-460
[23]   Baroclinically-driven flows and dynamo action in rotating spherical fluid shells [J].
Simitev, Radostin D. ;
Busse, Friedrich H. .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2017, 111 (05) :369-379
[24]   Simulations of dynamo action in slowly rotating M dwarfs: Dependence on dimensionless parameters [J].
Ortiz-Rodriguez, C. A. ;
Kaepylae, P. J. ;
Navarrete, F. H. ;
Schleicher, D. R. G. ;
Mennickent, R. E. ;
Hidalgo, J. P. ;
Toro-Velasquez, B. .
ASTRONOMY & ASTROPHYSICS, 2023, 678
[25]   Fluctuation dynamo amplified by intermittent shear bursts in convectively driven magnetohydrodynamic turbulence [J].
Pratt, J. ;
Busse, A. ;
Mueller, W. -C. .
ASTRONOMY & ASTROPHYSICS, 2013, 557
[26]   DIFFUSION EFFECT ON THE DYNAMO ACTION AT HIGH-ORDER APPROXIMATION [J].
CARVALHO, JC .
ASTRONOMY & ASTROPHYSICS, 1994, 283 (03) :1046-1050
[28]   Dynamo effect in unstirred self-gravitating turbulence [J].
Brandenburg, Axel ;
Ntormousi, Evangelia .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (02) :2136-2151
[29]   A galaxy dynamo by Supernova-driven interstellar turbulence [J].
Gressel, Oliver ;
Ziegler, Udo ;
Elstner, Detlef ;
Ruediger, Guenther .
COSMIC MAGNETIC FIELDS: FROM PLANETS, TO STARS AND GALAXIES, 2009, (259) :81-86
[30]   Dynamo action in rapidly rotating Rayleigh-Benard convection at infinite Prandtl number [J].
Cattaneo, Fausto ;
Hughes, David W. .
JOURNAL OF FLUID MECHANICS, 2017, 825 :385-411