Numerical experiments on dynamo action in sheared and rotating turbulence

被引:49
|
作者
Yousef, T. A. [1 ,2 ]
Heinemann, T. [1 ]
Rincon, F. [3 ]
Schekochihin, A. A. [2 ]
Kleeorin, N. [4 ]
Rogachevskii, I. [4 ]
Cowley, S. C. [2 ,5 ]
McWilliams, J. C. [6 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Plasma Phys Grp, London SW7 2AZ, England
[3] Univ Toulouse, Lab Astrophys Toulouse Tarbes, CNRS, F-31400 Toulouse, France
[4] Ben Gurion Univ Negev, Dept Mech Engn, IL-84105 Beer Sheva, Israel
[5] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[6] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90095 USA
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
magnetic fields; magnetohydrodynamics (MHD); turbulence;
D O I
10.1002/asna.200811018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Numerical simulations of forced turbulence in elongated shearing boxes are carried out to demonstrate that a nonhelical turbulence in conjunction with a linear shear can give rise to a mean-field dynamo. Exponential growth of magnetic field at scales larger than the outer (forcing) scale of the turbulence is found. Over a range of values of the shearing rate S spanning approximately two orders of magnitude, the growth rate of the magnetic field is proportional to the imposed shear, gamma proportional to S, while the characteristic spatial scale of the field is l(B) proportional to S-1/2. The effect is quite general: earlier results for the nonrotating case by Yousef et al. (2008) are extended to shearing boxes with Keplerian rotation; it is also shown that the shear dynamo mechanism operates both below and above the threshold for the fluctuation dynamo. The apparently generic nature of the shear dynamo effect makes it an attractive object of study for the purpose of understanding the generation of magnetic fields in astrophysical systems. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:737 / 749
页数:13
相关论文
共 50 条
  • [1] Dynamo action in dissipative, forced, rotating MHD turbulence
    Shebalin, John V.
    PHYSICS OF PLASMAS, 2016, 23 (06)
  • [2] Behavior of hydrodynamic and magnetohydrodynamic turbulence in a rotating sphere with precession and dynamo action
    Etchevest, M.
    Fontana, M.
    Dmitruk, P.
    PHYSICAL REVIEW FLUIDS, 2022, 7 (10)
  • [3] Structural Features of Rotating Sheared Turbulence
    Jacobitz, F. G.
    Bos, W. J. T.
    Schneider, K.
    Farge, M.
    ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 423 - 426
  • [4] Helical Properties of Sheared and Rotating Turbulence
    Jacobitz, Frank G.
    Schneider, Kai
    Bos, Wouter J. T.
    Farge, Marie
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): CONVECTION, ROTATION, STRATIFICATION AND BUOYANCY EFFECTS, 2011, 318
  • [5] Dynamo action, between numerical experiments and liquid sodium devices
    Léorat, J
    Lallemand, P
    Guermond, JL
    Plunian, F
    DYNAMO AND DYNAMICS, A MATHEMATICAL CHALLENGE, 2001, 26 : 25 - 33
  • [6] Dynamo action in rotating convection
    Guerrero, Gustavo
    de Gouveia Dal Pino, Elisabete M.
    HIGHLIGHTS OF ASTRONOMY, VOL 15, 2010, 15 : 347 - 347
  • [7] Vortical structures in rotating uniformly sheared turbulence
    Tanaka, M
    Yanase, S
    Kida, S
    Kawahara, G
    FLOW TURBULENCE AND COMBUSTION, 1998, 60 (03) : 301 - 332
  • [8] Nonlinear spectral model for rotating sheared turbulence
    Zhu, Ying
    Cambon, C.
    Godeferd, F. S.
    Salhi, A.
    JOURNAL OF FLUID MECHANICS, 2019, 866 : 5 - 32
  • [9] Vortical Structures in Rotating Uniformly Sheared Turbulence
    Mitsuru Tanaka
    Shinichiro Yanase
    Shigeo Kida
    Genta Kawahara
    Flow, Turbulence and Combustion, 1998, 60 : 301 - 332
  • [10] Magnetic dynamo action in helical turbulence
    Malyshkin, Leonid
    Boldyrev, Stanislav
    ASTROPHYSICAL JOURNAL LETTERS, 2007, 671 (02) : L185 - L188