A Parameter-uniform Method for Two Parameters Singularly Perturbed Boundary Value Problems via Asymptotic Expansion

被引:12
作者
Kumar, D. [1 ]
Yadaw, A. S. [2 ]
Kadalbajoo, M. K. [3 ]
机构
[1] BITS, Dept Math, Pilani 333031, Rajasthan, India
[2] Mt Sinai Sch Med, Dept Pharmacol & Syst Biol, New York, NY 10029 USA
[3] IIT Kanput, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
来源
APPLIED MATHEMATICS & INFORMATION SCIENCES | 2013年 / 7卷 / 04期
关键词
Singular perturbation; two parameters; boundary layer; asymptotic expansion; B-spline collocation method; EQUATIONS; SCHEME;
D O I
10.12785/amis/070436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An approximate method for two parameters singularly perturbed boundary value problems having boundary layers at both end points is given. The method is motivated by the asymptotic behavior of the solution. In the outer region the solution of the problem is approximated by the zeroth order asymptotic expansion while in the inner region the solution of the problem is obtained by using B-spline collocation method. The method is iterated on the transition point of the boundary layer region. To demonstrate the applicability of the method two test examples are considered.
引用
收藏
页码:1525 / 1532
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 1990, SINGULAR PERTURBATIO
[2]  
[Anonymous], 1976, CHISEL METODY MEKH S
[3]  
[Anonymous], 1978, A Practical Guide to Splines
[4]   A parameter robust second order numerical method for a singularly perturbed two-parameter problem [J].
Gracia, JL ;
O'Riordan, E ;
Pickett, ML .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (07) :962-980
[5]   Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters [J].
Linss, T ;
Roos, HG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) :355-366
[6]  
O'Malley R. E., 1974, Introduction to singular perturbations
[7]   Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems [J].
O'Riordan, E. ;
Pickett, M. L. ;
Shishkin, G. I. .
MATHEMATICS OF COMPUTATION, 2006, 75 (255) :1135-1154
[8]  
O'Riordan E., 2003, Comput. Methods Appl. Math, V3, P424, DOI [DOI 10.2478/CMAM-2003-0028, 10.2478/cmam-2003-0028]
[9]  
OMALLEY RE, 1969, J MATH MECH, V18, P835