Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity

被引:420
作者
Hu, Lung-Hao [1 ]
Wu, Feng-Yu [1 ]
Lin, Cheng-Te [1 ]
Khlobystov, Andrei N. [2 ]
Li, Lain-Jong [1 ]
机构
[1] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
[2] Univ Nottingham, Sch Chem, Nottingham NG7 2RD, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
IRON PHOSPHATE; TEMPERATURE; PERFORMANCE; COMPOSITES; IMPACT;
D O I
10.1038/ncomms2705
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The specific capacity of commercially available cathode carbon-coated lithium iron phosphate is typically 120-160 mAh g(-1), which is lower than the theoretical value 170 mAhg(-1). Here we report that the carbon-coated lithium iron phosphate, surface-modified with 2 wt% of the electrochemically exfoliated graphene layers, is able to reach 208 m Ah g(-1) in specific capacity. The excess capacity is attributed to the reversible reduction-oxidation reaction between the lithium ions of the electrolyte and the exfoliated graphene flakes, where the graphene flakes exhibit a capacity higher than 2,000 m Ah g(-1). The highly conductive graphene flakes wrapping around carbon-coated lithium iron phosphate also assist the electron migration during the charge/discharge processes, diminishing the irreversible capacity at the first cycle and leading to similar to 100% coulombic efficiency without fading at various C-rates. Such a simple and scalable approach may also be applied to other cathode systems, boosting up the capacity for various Li batteries.
引用
收藏
页数:7
相关论文
共 39 条
[1]  
Amin R, 2008, PHYS CHEM CHEM PHYS, V10, P3524, DOI 10.1039/b801795f
[2]   MW-assisted synthesis of LiFePO4 for high power applications [J].
Beninati, Sabina ;
Damen, Libero ;
Mastragostino, Marina .
JOURNAL OF POWER SOURCES, 2008, 180 (02) :875-879
[3]   Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source [J].
Bewlay, SL ;
Konstantinov, K ;
Wang, GX ;
Dou, SX ;
Liu, HK .
MATERIALS LETTERS, 2004, 58 (11) :1788-1791
[4]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[5]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[6]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[7]   Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites [J].
Doeff, Marca M. ;
Wilcox, James D. ;
Yu, Rong ;
Aumentado, Albert ;
Marcinek, Marek ;
Kostecki, Robert .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) :995-1001
[8]   Optimization of carbon coatings on LiFePO4 [J].
Doeff, Marca M. ;
Wilcox, James D. ;
Kostecki, Robert ;
Lau, Grace .
JOURNAL OF POWER SOURCES, 2006, 163 (01) :180-184
[9]   Hierarchically Porous Monolithic LiFePO4/Carbon Composite Electrode Materials for High Power Lithium Ion Batteries [J].
Doherty, Cara M. ;
Caruso, Rachel A. ;
Smarsly, Bernd M. ;
Adelhelm, Philipp ;
Drummond, Calum J. .
CHEMISTRY OF MATERIALS, 2009, 21 (21) :5300-5306
[10]   Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites [J].
Dominko, R ;
Bele, M ;
Gaberscek, M ;
Remskar, M ;
Hanzel, D ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (03) :A607-A610