Facile synthesis of Ag nanowires/mesoporous TiO2 core-shell nanocables with improved properties for lithium storage

被引:4
作者
Qu, GenLong [1 ,2 ]
Geng, Hongbo [1 ,2 ]
Guo, Jun [3 ]
Zheng, Junwei [4 ]
Gu, Hongwei [1 ,2 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Key Lab Organ Synth Jiangsu Prov, Suzhou 215123, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Peoples R China
[3] Soochow Univ, Anal & Testing Ctr, Suzhou 215123, Peoples R China
[4] Soochow Univ, Coll Phys Optolectron & Energy, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-RATE PERFORMANCE; ANODE MATERIAL; ELECTROCHEMICAL CHARACTERIZATION; NANOCOMPOSITE; COMPOSITE; GRAPHENE; NANORODS; DESIGN; ARRAYS; CAPABILITY;
D O I
10.1039/c5nj01489a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, coaxial nanocables formed of Ag nanowires with a mesoporous structured TiO2 layer coating (denoted as Ag/TiO2) were successfully fabricated through a facile sol-gel method combined with a hydrothermal treatment process and a short post-annealing procedure. The composite nano-structures show the unique feature of a uniform core-shell structure with highly crystalline nanocrystals, small size (similar to 6 nm), uniform mesopores (similar to 9 nm), high surface area (similar to 93.6 m(2) g(-1)) and highly conductive Ag nanowire which favor the excellent electrochemical performance of the Ag/TiO2 nanocable electrode. The resultant Ag/TiO2 nanocables could deliver a superior lithium storage capability (a stable reversible capacity of similar to 160 mA h g(-1) after 230 cycles at a current density of 1 C).
引用
收藏
页码:7889 / 7894
页数:6
相关论文
共 45 条
[1]   Carbon nanocage supported synthesis of V2O5 nanorods and V2O5/TiO2 nanocomposites for Li-ion batteries [J].
Armstrong, Mark J. ;
Burke, David M. ;
Gabriel, Timothy ;
O'Regan, Colm ;
O'Dwyer, Colm ;
Petkov, Nikolay ;
Holmes, Justin D. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (40) :12568-12578
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Biomimetic layer-by-layer Co-mineralization approach towards TiO2/Au nanosheets with high rate performance for lithium ion batteries [J].
Hao, Bo ;
Yan, Yong ;
Wang, Xiaobo ;
Chen, Ge .
NANOSCALE, 2013, 5 (21) :10472-10480
[4]   Growth of TiO2 nanorod arrays on reduced graphene oxide with enhanced lithium-ion storage [J].
He, Lifang ;
Ma, Ruguang ;
Du, Ning ;
Ren, Jianguo ;
Wong, Tailun ;
Li, Yangyang ;
Lee, Shuit Tong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (36) :19061-19066
[5]   High lithium electroactivity of nanometer-sized rutile TiO2 [J].
Hu, Yong-Sheng ;
Kienle, Lorenz ;
Guo, Yu- Guo ;
Maier, Joachim .
ADVANCED MATERIALS, 2006, 18 (11) :1421-+
[6]   Mesoporous TiO2 nano networks: Anode for high power lithium battery applications [J].
Jung, Hun-Gi ;
Oh, Sung Woo ;
Ce, Jin ;
Jayaprakash, N. ;
Sun, Yang-Kook .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (04) :756-759
[7]   Unique Structural Changes of Three-Dimensionally Ordered Macroporous TiO2 Electrode Materials During Electrochemical Cycling [J].
Kim, Hyejung ;
Kim, Min Gyu ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (12) :1425-1432
[8]   Li4Ti5O12/reduced graphite oxide nano-hybrid material for high rate lithium-ion batteries [J].
Kim, Hyun-Kyung ;
Bak, Seong-Min ;
Kim, Kwang-Bum .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (12) :1768-1771
[9]   Carbon nanotubes for lithium ion batteries [J].
Landi, Brian J. ;
Ganter, Matthew J. ;
Cress, Cory D. ;
DiLeo, Roberta A. ;
Raffaelle, Ryne P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (06) :638-654
[10]   Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries [J].
Lee, Hyun-Wook ;
Muralidharan, P. ;
Ruffo, Riccardo ;
Mari, Claudio M. ;
Cui, Yi ;
Kim, Do Kyung .
NANO LETTERS, 2010, 10 (10) :3852-3856