CatalyticHTL-derived biochar and sol-gel synthesized (Mn, Ti)-oxides for asymmetric supercapacitors

被引:11
作者
Amar, Vinod S. [1 ]
Houck, Joseph D. [1 ]
Shende, Rajesh V. [1 ]
机构
[1] South Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA
关键词
biochar; cyclic voltammetry; HTL; CHTL; (Mn; Ti)-oxide; specific capacitance; ELECTROCHEMICAL ENERGY-STORAGE; DOUBLE-LAYER CAPACITANCE; HYDROTHERMAL LIQUEFACTION; ACTIVATED CARBON; POROUS CARBON; ELECTRODE MATERIALS; HIGH-POROSITY; BIOMASS; PERFORMANCE; COMPOSITES;
D O I
10.1002/er.5938
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, hydrothermal liquefaction (HTL)-derived biochar is investigated as electrode material with sol-gel-derived (Mn, Ti)-oxide electrode for asymmetric supercapacitor. To generate biochar, pinewood flour was used as an example biomass feedstock for HTL, which was carried out at 300 degrees C and 1500 psi for 1 hour in the absence and presence of the Ni-nitrate (Ni[NO3](2).6H(2)O) catalyst. After HTL, different products were analyzed by TOC analyzer, HPLC, and GCMS, and mass yield/carbon balance was determined. Solid residue recovered after HTL or catalytic HTL (CHTL) was thermally treated at 400 degrees C for 2 hours to obtain biochar, which was characterized using BET surface area analyzer and SEM/EDX, and utilized as one of the electrodes. To fabricate asymmetric supercapacitor (ASC), (Mn,Ti)-oxide electrode material was synthesized using sol-gel technique with Mn:Ti precursor ratio of 30:70 wt%. As-synthesized gels were aged, dried, and calcined with a 2-step heating process (step-1: heating to 500 degrees C and cooling to 50 degrees C, and step-2: heating to 1000 degrees C with soak time of 2 hours and cooling to 50 degrees C), which were characterized by powdered X-ray diffraction and BET analysis. Asymmetric supercapacitors were fabricated with HTL/CHTL derived biochar/(Mn,Ti)-oxide electrodes and KOH electrolyte, and tested with cyclic voltammetry to determine specific capacitance. ASC fabricated with CHTL-derived biochar electrode showed a higher specific capacitance of 187 F/g.
引用
收藏
页码:12546 / 12558
页数:13
相关论文
共 84 条
[1]  
Amar V.S., 2019, TECH CONNECT BRIEFS, P195
[2]  
Bayat H., 2019, 2019 ASABE ANN INT M
[3]   Hydrothermal liquefaction of biomass to fuels and value-added chemicals: Products applications and challenges to develop large-scale operations [J].
Beims, Ramon Filipe ;
Hu, Yulin ;
Shui, Hengfu ;
Xu, Chunbao .
BIOMASS & BIOENERGY, 2020, 135
[4]   Role of surface chemistry on electric double layer capacitance of carbon materials [J].
Bleda-Martínez, MJ ;
Maciá-Agulló, JA ;
Lozano-Castelló, D ;
Morallón, E ;
Cazorla-Amorós, D ;
Linares-Solano, A .
CARBON, 2005, 43 (13) :2677-2684
[5]   Carbon-based composite materials for supercapacitor electrodes: a review [J].
Borenstein, Arie ;
Hanna, Ortal ;
Attias, Ran ;
Luski, Shalom ;
Brousse, Thierry ;
Aurbach, Doron .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (25) :12653-12672
[6]   TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage [J].
Brousse, Thierry ;
Marchand, Rene ;
Taberna, Pierre-Louis ;
Simon, Patrice .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :571-577
[7]   Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes [J].
Cakici, Murat ;
Reddy, Kakarla Raghava ;
Alonso-Marroquin, Fernando .
CHEMICAL ENGINEERING JOURNAL, 2017, 309 :151-158
[8]   Nanostructured carbon for energy storage and conversion [J].
Candelaria, Stephanie L. ;
Shao, Yuyan ;
Zhou, Wei ;
Li, Xiaolin ;
Xiao, Jie ;
Zhang, Ji-Guang ;
Wang, Yong ;
Liu, Jun ;
Li, Jinghong ;
Cao, Guozhong .
NANO ENERGY, 2012, 1 (02) :195-220
[9]   Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects [J].
Cao, Leichang ;
Zhang, Cheng ;
Chen, Huihui ;
Tsang, Daniel C. W. ;
Luo, Gang ;
Zhang, Shicheng ;
Chen, Jianmin .
BIORESOURCE TECHNOLOGY, 2017, 245 :1184-1193
[10]   Properties of dairy-manure-derived biochar pertinent to its potential use in remediation [J].
Cao, Xinde ;
Harris, Willie .
BIORESOURCE TECHNOLOGY, 2010, 101 (14) :5222-5228