Numerical integration formulas of degree two

被引:35
作者
Xiu, Dongbin [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
numerical integration; cubature formulas;
D O I
10.1016/j.apnum.2007.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Numerical integration formulas in n-dimensional nonsymmetric Euclidean space of degree two, consisting of n + 1 equally weighted points, are discussed, for a class of integrals often encountered in statistics. This is an extension of Stroud's theory [A.H. Stroud, Remarks on the disposition of points in numerical integration formulas, Math. Comput. 11 (60) (1957) 257-261; A.H. Stroud. Numerical integration formulas of degree two, Math. Comput. 14 (69) (1960) 21-26]. Explicit formulas are given for integrals with nonsymmetric weights. These appear to be new results and include the Stroud's degree two formula as a special case. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1515 / 1520
页数:6
相关论文
共 50 条
  • [41] NUMERICAL INTEGRATION METHODS FOR ORBITAL MOTION
    Montenbruck, O.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1992, 53 (01) : 59 - 69
  • [42] COMPUTATION OF JN(X) BY NUMERICAL INTEGRATION
    STROUD, AH
    KOHLI, JP
    COMMUNICATIONS OF THE ACM, 1969, 12 (04) : 236 - &
  • [43] Numerical integration and discrepancy, a new approach
    Triebel, Hans
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (01) : 139 - 159
  • [44] Effect of numerical integration on meshless methods
    Babuska, Ivo
    Banerjee, Uday
    Osborn, John E.
    Zhang, Qinghui
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (37-40) : 2886 - 2897
  • [45] Numerical integration of sparsely sampled data
    Petrovskaya, Natalia
    Venturino, Ezio
    SIMULATION MODELLING PRACTICE AND THEORY, 2011, 19 (09) : 1860 - 1872
  • [46] On the numerical integration of trimmed isogeometric elements
    Nagy, Attila P.
    Benson, David J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 : 165 - 185
  • [47] On optimal grid construction in numerical integration
    Wang, S
    Lee, WR
    Teo, KL
    ENGINEERING OPTIMIZATION, 1999, 32 (02) : 177 - 189
  • [48] Electromagnetic Transient Numerical Integration Methods
    Du, Yu
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3115 - 3119
  • [49] Numerical integration of functions with boundary singularities
    Monegato, G
    Scuderi, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 112 (1-2) : 201 - 214
  • [50] A general quantum algorithm for numerical integration
    Shu, Guoqiang
    Shan, Zheng
    Xu, Jinchen
    Zhao, Jie
    Wang, Shuya
    SCIENTIFIC REPORTS, 2024, 14 (01):