Modelling mass distribution in elliptical galaxies: mass profiles and their correlation with velocity dispersion profiles

被引:34
作者
Chae, Kyu-Hyun [1 ]
Bernardi, Mariangela [2 ]
Kravtsov, Andrey V. [3 ,4 ]
机构
[1] Sejong Univ, Dept Astron & Space Sci, Seoul 143747, South Korea
[2] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[3] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
galaxies: elliptical and lenticular; cD; galaxies: formation; galaxies: haloes; galaxies: kinematics and dynamics; galaxies: structure; dark matter; DIGITAL SKY SURVEY; DARK-MATTER HALOS; TO-LIGHT RATIO; SAURON PROJECT; FUNDAMENTAL PLANE; ATLAS(3D) PROJECT; SCALING RELATIONS; DENSITY PROFILE; ADIABATIC CONTRACTION; DYNAMICAL MASSES;
D O I
10.1093/mnras/stt2163
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We assemble a statistical set of global mass models for similar to 2000 nearly spherical Sloan Digital Sky Survey (SDSS) galaxies at a mean redshift of << z >> = 0.12 based on their aperture velocity dispersions and newly derived luminosity profiles in conjunction with published velocity dispersion profiles and empirical properties and relations of galaxy and halo parameters. When two-component (i.e. stellar plus dark) mass models are fitted to the SDSS aperture velocity dispersions, the predicted velocity dispersion profile (VP) slopes within the effective (i.e. projected half-light) radius R-eff match well the distribution in observed elliptical galaxies. From a number of input variations the models exhibit for the radial range 0.1R(eff) < r < R-eff a tight correlation <<gamma(e)>> = (1.865 +/- 0.008) + (-4.93 +/- 0.15)<<eta >> where <<gamma(e)>> is the mean slope absolute value of the total mass density and <<eta >> is the mean slope of the velocity dispersion profile, which leads to a super-isothermal <<gamma(e)>> = 2.15 +/- 0.04 for <<eta >> = -0.058 +/- 0.008 in observed elliptical galaxies. Furthermore, the successful two-component models appear to imply a typical slope curvature pattern in the total mass profile because for the observed steep luminosity (stellar mass) profile and the weak lensing inferred halo profile at large radii a total mass profile with monotonically varying slope would require too high dark matter density in the optical region giving rise to too large aperture velocity dispersion and too shallow VP.
引用
收藏
页码:3670 / 3687
页数:18
相关论文
共 76 条
[1]  
Auger M. W., 2010, APJ, V724, P511
[2]   Two-dimensional kinematics of SLACS lenses - III. Mass structure and dynamics of early-type lens galaxies beyond z ≃ 0.1 [J].
Barnabe, Matteo ;
Czoske, Oliver ;
Koopmans, Leon V. E. ;
Treu, Tommaso ;
Bolton, Adam S. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (03) :2215-2232
[3]   The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions [J].
Bell, EF ;
McIntosh, DH ;
Katz, N ;
Weinberg, MD .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2003, 149 (02) :289-312
[4]   Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type [J].
Bernardi, M. ;
Shankar, F. ;
Hyde, J. B. ;
Mei, S. ;
Marulli, F. ;
Sheth, R. K. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 404 (04) :2087-2122
[5]  
Bernardi M., 2012, MNRAS
[6]   SELF-SIMILAR SECONDARY INFALL AND ACCRETION IN AN EINSTEIN-DESITTER UNIVERSE [J].
BERTSCHINGER, E .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1985, 58 (01) :39-66
[7]   M/L AND VELOCITY ANISOTROPY FROM OBSERVATIONS OF SPHERICAL GALAXIES, OR MUST M87 HAVE A MASSIVE BLACK-HOLE [J].
BINNEY, J ;
MAMON, GA .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1982, 200 (01) :361-375
[8]  
Binney J., 2008, GALACTIC DYNAMICS, VSecond
[9]   K-corrections and filter transformations in the ultraviolet, optical, and near-infrared [J].
Blanton, Michael R. ;
Roweis, Sam .
ASTRONOMICAL JOURNAL, 2007, 133 (02) :734-754
[10]   CONTRACTION OF DARK MATTER GALACTIC HALOS DUE TO BARYONIC INFALL [J].
BLUMENTHAL, GR ;
FABER, SM ;
FLORES, R ;
PRIMACK, JR .
ASTROPHYSICAL JOURNAL, 1986, 301 (01) :27-34