Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network

被引:171
|
作者
Naqvi, Salman Raza [1 ]
Hameed, Zeeshan [1 ]
Tariq, Rumaisa [1 ]
Taqvi, Syed A. [2 ,6 ]
Ali, Imtiaz [3 ]
Niazi, M. Bilal Khan [1 ]
Noor, Tayyaba [1 ]
Hussain, Arshad [1 ]
Iqbal, Naseem [4 ]
Shahbaz, M. [5 ]
机构
[1] Natl Univ Sci & Technol, Sch Chem & Mat Engn, H-12, Islamabad, Pakistan
[2] Univ Teknol PETRONAS, Chem Engn Dept, Bandar Seri Iskandar 32610, Perak, Malaysia
[3] King Abdulaziz Univ, Dept Chem & Mat Engn, Rabigh, Saudi Arabia
[4] NUST, USPCAS E, H-12 Campus, Islamabad 44000, Pakistan
[5] Univ Gujrat, Chem Engn Dept, Gujrat, Pakistan
[6] NED Univ Engn & Technol, Dept Chem Engn, Karachi, Pakistan
关键词
Co-pyrolysis; Rice husk; Sewage sludge; Synergistic effect; Kinetics; Artificial neural network; BIOMASS PYROLYSIS; CATALYTIC PYROLYSIS; WASTE; GASIFICATION; MODEL; PREDICTION; HEAT; ASH; DECOMPOSITION; BIOENERGY;
D O I
10.1016/j.wasman.2018.12.031
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates the thermal decomposition, thermodynamic and kinetic behavior of rice-husk (R), sewage sludge (S) and their blends during co-pyrolysis using thermogravimetric analysis at a constant heating rate of 20 degrees C/min. Coats-Redfern integral method is applied to mass loss data by employing seventeen models of five major reaction mechanisms to calculate the kinetics and thermodynamic parameters. Two temperature regions: I (200-400 degrees C) and II (400-600 degrees C) are identified and best fitted with different models. Among all models, diffusion models show high activation energy with higher R-2(0.99) of rice husk (66.27-82.77 kJ/mol), sewage sludge (52.01-68.01 kJ/mal) and subsequent blends (45.10-65.81 kJ/mol) for region I and for rice husk (7.31-25.84 kJ/mol), sewage sludge (1.85-16.23 kJ/mol) and blends (4.95-16.32 kJ/mol) for region II, respectively. Thermodynamic parameters are calculated using kinetics data to assess the co-pyrolysis process enthalpy, Gibbs-free energy, and change in entropy. Artificial neural network (ANN) models are developed and employed on co-pyrolysis thermal decomposition data to study the reaction mechanism by calculating Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and coefficient of determination (R-2). The co-pyrolysis results from a thermal behavior and kinetics perspective are promising and the process is viable to recover organic materials more efficiently. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 50 条
  • [21] Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar
    Huang, Hua-jun (huanghuajun2004@126.com), 1600, Elsevier B.V., Netherlands (125):
  • [22] Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar
    Huang, Hua-jun
    Yang, Ting
    Lai, Fa-ying
    Wu, Guo-qiang
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 125 : 61 - 68
  • [23] Synergistic thermal behavior and kinetics in the co-pyrolysis of walnut shell and Enteromorpha clathrate
    Liu, Zhuwei
    Li, Lin
    Wang, Rui
    Dong, Qing
    Huang, Zengguang
    Cheng, Qiang
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (17) : 9377 - 9388
  • [24] Studies on synergistic effects in co-pyrolysis of sargassum and poplar: Thermal behavior and kinetics
    Cheng, Zhanjun
    Gao, Xuezhi
    Ma, Zenghui
    Guo, Xiang
    Wang, Jinglan
    Luan, Pengpeng
    He, Sirong
    Yan, Beibei
    Chen, Guanyi
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 167
  • [25] Studies on synergistic effects in co-pyrolysis of sargassum and poplar: Thermal behavior and kinetics
    Cheng, Zhanjun
    Gao, Xuezhi
    Ma, Zenghui
    Guo, Xiang
    Wang, Jinglan
    Luan, Pengpeng
    He, Sirong
    Yan, Beibei
    Chen, Guanyi
    Journal of Analytical and Applied Pyrolysis, 2022, 167
  • [26] Kinetics evaluation and thermal decomposition characteristics of co-pyrolysis of municipal sewage sludge and hazelnut shell
    Zhao, Bing
    Xu, Xinyang
    Li, Haibo
    Chen, Xi
    Zeng, Fanqiang
    BIORESOURCE TECHNOLOGY, 2018, 247 : 21 - 29
  • [27] Co-pyrolysis of sewage sludge and pinewood sawdust: the synergistic effect and bio-oil characteristics
    Jisong Bai
    Xin Fu
    Quanwei Lv
    Fangjun Chen
    Yu Yang
    Jun Wang
    Wei Gan
    Fucan Deng
    Chenxuan Zhu
    Biomass Conversion and Biorefinery, 2023, 13 : 9205 - 9212
  • [28] Investigation of thermal behaviour and synergistic effect in co-pyrolysis of municipal solid waste and sewage sludge through thermogravimetric analysis
    Embaye, Tedla Medhane
    Ahmed, Muhammed Bilal
    Dai, Gaofeng
    Bukhsh, Khuda
    Hu, Zhongfu
    Magdziarz, Aneta
    Stojiljkovic, Dragoslava
    Manic, Nebojsa
    Wang, Xuebin
    JOURNAL OF THE ENERGY INSTITUTE, 2023, 111
  • [29] Co-pyrolysis of sewage sludge and pinewood sawdust: the synergistic effect and bio-oil characteristics
    Bai, Jisong
    Fu, Xin
    Lv, Quanwei
    Chen, Fangjun
    Yang, Yu
    Wang, Jun
    Gan, Wei
    Deng, Fucan
    Zhu, Chenxuan
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (10) : 9205 - 9212
  • [30] Thermogravimetric analysis of rice husk and low-density polyethylene co-pyrolysis: kinetic and thermodynamic parameters
    Bisen, Divya
    Chouhan, Ashish Pratap Singh
    Sarma, Anil Kumar
    Rajamohan, Sakthivel
    Elumalai, P. V.
    Balasubramanian, Dhinesh
    Cherie, Aschalew
    SCIENTIFIC REPORTS, 2024, 14 (01):