An up-to-the boundary version of Friedrichs's lemma and applications to the linear Koiter shell model

被引:18
作者
Blouza, A [1 ]
Le Dret, HE
机构
[1] Univ Rouen, Lab Anal & Modelisat Stochast, F-76821 Mont St Aignan, France
[2] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
[3] Univ Texas, Texas Inst Computat & Appl Math, Austin, TX 78712 USA
关键词
Friedrichs's lemma; shell theory; Koiter's model;
D O I
10.1137/S0036141000380012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we introduce a variant of the standard mollifier technique that is valid up to the boundary of a Lipschitz domain in R-n. A version of Friedrichs's lemma is derived that gives an estimate up to the boundary for the commutator of the multiplication by a Lipschitz function and the modified mollification. We use this version of Friedrichs's lemma to prove the density of smooth functions in the new function space introduced in our earlier work concerning the linear Koiter shell model for shells with little regularity. The density of smooth functions is in turn used to prove continuous dependence of the solution of Koiter's model on the midsurface. This provides a complete justification of our new formulation of the Koiter model.
引用
收藏
页码:877 / 895
页数:19
相关论文
共 24 条
[1]  
Adams R., 1975, PURE APPL MATH, V65
[2]  
Bardos C, 1970, ANN SCI ECOLE NORM S, V4, P185, DOI 10.24033/asens.1190
[3]  
BERNADOU M, 1976, LECTURE NOTES EC MAT, V134, P89, DOI DOI 10.1007/978-3-642-85972-4_7
[4]  
BERNADOU M, 1994, RECH MATH APPL, V33
[5]   Existence and uniqueness for the linear Koiter model for shells with little regularity [J].
Blouza, A ;
Le Dret, H .
QUARTERLY OF APPLIED MATHEMATICS, 1999, 57 (02) :317-337
[6]  
BLOUZA A, 1994, CR ACAD SCI I-MATH, V319, P1127
[7]  
CHENAIS D, 1973, CR ACAD SCI A MATH, V277, P905
[8]  
Ciarlet P.G., 2000, MATH ELASTICITY, V3
[9]  
Delfour MC, 1998, CRM PROC & LECT NOTE, V13, P19
[10]  
Desjardins B, 1996, COMMUN PART DIFF EQ, V21, P1667