Transition matrix Monte Carlo method

被引:150
作者
Wang, JS [1 ]
Swendsen, RH
机构
[1] Natl Univ Singapore, Dept Computat Sci, Singapore 119260, Singapore
[2] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
关键词
Monte Carlo method; flat histogram; multi-canonical ensemble;
D O I
10.1023/A:1013180330892
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a formalism of the transition matrix Monte Carlo method. A stochastic matrix in the space of energy can be estimated from Monte Carlo simulation. This matrix is used to compute the density of states, as well as to construct multi-canonical and equal-hit algorithms. We discuss the performance of the methods. The results are compared with single histogram method, multicanonical method, and other methods. In many aspects, the present method is an improvement over the previous methods.
引用
收藏
页码:245 / 285
页数:41
相关论文
共 57 条
[1]   Zero-variance principle for Monte Carlo algorithms [J].
Assaraf, R ;
Caffarel, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (23) :4682-4685
[2]   Exact distribution of energies in the two-dimensional Ising model [J].
Beale, PD .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :78-81
[3]  
Berg B. A., 1992, International Journal of Modern Physics C (Physics and Computers), V3, P1083, DOI 10.1142/S0129183192000713
[4]   GROUND-STATE PROPERTIES OF THE 3-DIMENSIONAL ISING SPIN-GLASS [J].
BERG, BA ;
HANSMANN, UE ;
CELIK, T .
PHYSICAL REVIEW B, 1994, 50 (22) :16444-16452
[5]   Configuration space for random walk dynamics [J].
Berg, BA ;
Hansmann, UHE .
EUROPEAN PHYSICAL JOURNAL B, 1998, 6 (03) :395-398
[6]   Multicanonical recursions [J].
Berg, BA .
JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (1-2) :323-342
[7]   MULTICANONICAL ENSEMBLE - A NEW APPROACH TO SIMULATE 1ST-ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :9-12
[8]   Efficient Monte Carlo sampling by direct flattening of free energy barriers [J].
Besold, G ;
Risbo, J ;
Mouritsen, OG .
COMPUTATIONAL MATERIALS SCIENCE, 1999, 15 (03) :311-340
[9]  
BINDER K, 1987, TOPICS CURRENT PHYSI, V36
[10]  
BINDER K, 1995, TOPICS APPL PHYSICS, V71