Multi-Label Learning with Missing Labels

被引:71
|
作者
Wu, Baoyuan [1 ]
Liu, Zhilei [2 ]
Wang, Shangfei [2 ]
Hu, Bao-Gang [1 ]
Ji, Qiang [3 ]
机构
[1] CASIA, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[2] Univ Sci & Technol China, Hefei 230027, Anhui, Peoples R China
[3] Rensselaer Polytech Inst, Troy, NY 12180 USA
来源
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2014年
关键词
D O I
10.1109/ICPR.2014.343
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In multi-label learning, each sample can be assigned to multiple class labels simultaneously. In this work, we focus on the problem of multi-label learning with missing labels (MLML), where instead of assuming a complete label assignment is provided for each sample, only partial labels are assigned with values, while the rest are missing or not provided. The positive (presence), negative (absence) and missing labels are explicitly distinguished in MLML. We formulate MLML as a transductive learning problem, where the goal is to recover the full label assignment for each sample by enforcing consistency with available label assignments and smoothness of label assignments. Along with an exact solution, we also provide an effective and efficient approximated solution. Our method shows much better performance than several state-of-the-art methods on several benchmark data sets.
引用
收藏
页码:1964 / 1968
页数:5
相关论文
共 50 条
  • [1] Multi-label learning with missing and completely unobserved labels
    Huang, Jun
    Xu, Linchuan
    Qian, Kun
    Wang, Jing
    Yamanishi, Kenji
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (03) : 1061 - 1086
  • [2] Feature selection for multi-label learning with missing labels
    Wang, Chenxi
    Lin, Yaojin
    Liu, Jinghua
    APPLIED INTELLIGENCE, 2019, 49 (08) : 3027 - 3042
  • [3] Feature selection for multi-label learning with missing labels
    Chenxi Wang
    Yaojin Lin
    Jinghua Liu
    Applied Intelligence, 2019, 49 : 3027 - 3042
  • [4] Multi-label learning with missing and completely unobserved labels
    Jun Huang
    Linchuan Xu
    Kun Qian
    Jing Wang
    Kenji Yamanishi
    Data Mining and Knowledge Discovery, 2021, 35 : 1061 - 1086
  • [5] Multi-graph multi-label learning with novel and missing labels
    Huang, Miaomiao
    Zhao, Yuhai
    Wang, Yejiang
    Wahab, Fazal
    Sun, Yiming
    Chen, Chen
    KNOWLEDGE-BASED SYSTEMS, 2023, 276
  • [6] Scalable Generative Models for Multi-label Learning with Missing Labels
    Jain, Vikas
    Modhe, Nirbhay
    Rai, Piyush
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [7] Large-scale Multi-label Learning with Missing Labels
    Yu, Hsiang-Fu
    Jain, Prateek
    Kar, Purushottam
    Dhillon, Inderjit S.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [8] Instance structure based multi-label learning with missing labels
    Chen, Tianzhu
    Li, Fenghua
    Guo, Yunchuan
    Li, Zifu
    Tongxin Xuebao/Journal on Communications, 2021, 42 (11): : 121 - 132
  • [9] Global and Adaptive Local Label Correlation for Multi-label Learning with Missing Labels
    Jiang, Qingxia
    Li, Peipei
    Zhang, Yuhong
    Hu, Xuegang
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [10] Low rank label subspace transformation for multi-label learning with missing labels
    Kumar, Sanjay
    Rastogi, Reshma
    INFORMATION SCIENCES, 2022, 596 : 53 - 72