Pt5Gd as a Highly Active and Stable Catalyst for Oxygen Electroreduction

被引:230
作者
Escudero-Escribano, Maria [1 ]
Verdaguer-Casadevall, Arnau [1 ]
Malacrida, Paolo [1 ]
Gronbjerg, Ulrik [1 ,2 ]
Knudsen, Brian P. [1 ]
Jepsen, Anders K. [1 ]
Rossmeisl, Jan [2 ]
Stephens, Ifan E. L. [1 ]
Chorkendorff, Ib [1 ]
机构
[1] Tech Univ Denmark DTU, Dept Phys, Ctr Individual Nanoparticle Funct, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark DTU, Dept Phys, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
REDUCTION ACTIVITY; PLATINUM; ELECTROCATALYSIS; ALLOY; STABILITY; PT(111);
D O I
10.1021/ja306348d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The activity and stability of Pt5Gd for the oxygen reduction reaction (ORR) have been studied, using a combination of electrochemical measurements, angle-resolved X-ray photoelectron spectroscopy (AR-XPS), and density functional theory calculations. Sputter-cleaned, polycrystalline Pt5Gd shows a 5-fold increase in ORR activity, relative to pure Pt at 0.9 V, approaching the most active in the literature for catalysts prepared in this way. AR-XPS profiles after electrochemical measurements in 0.1 M HClO4 show the formation of a thick Pt overlayer on the bulk Pt5Gd, and the enhanced ORR activity can be explained by means of compressive strain effects. Furthermore, these novel bimetallic electrocatalysts are highly stable, which, in combination with their enhanced activity, makes them very promising for the development of new cathode catalysts for fuel cells.
引用
收藏
页码:16476 / 16479
页数:4
相关论文
共 31 条
[1]   Platinum monolayer fuel cell electrocatalysts [J].
Adzic, R. R. ;
Zhang, J. ;
Sasaki, K. ;
Vukmirovic, M. B. ;
Shao, M. ;
Wang, J. X. ;
Nilekar, A. U. ;
Mavrikakis, M. ;
Valerio, J. A. ;
Uribe, F. .
TOPICS IN CATALYSIS, 2007, 46 (3-4) :249-262
[2]   Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction [J].
Bing, Yonghong ;
Liu, Hansan ;
Zhang, Lei ;
Ghosh, Dave ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) :2184-2202
[3]   Pareto-optimal alloys [J].
Bligaard, T ;
Jóhannesson, GH ;
Ruban, AV ;
Skriver, HL ;
Jacobsen, KW ;
Norskov, JK .
APPLIED PHYSICS LETTERS, 2003, 83 (22) :4527-4529
[4]   Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes [J].
Chen, Shuo ;
Gasteiger, Hubert A. ;
Hayakawa, Katsuichiro ;
Tada, Tomoyuki ;
Shao-Horn, Yang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (01) :A82-A97
[5]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35
[6]  
Greeley J, 2009, NAT CHEM, V1, P552, DOI [10.1038/nchem.367, 10.1038/NCHEM.367]
[7]   THERMODYNAMIC PROPERTIES OF PLATINUM-RICH INTERMETALLICS IN THE PT-GD SYSTEM [J].
JACOB, KT ;
WASEDA, Y .
MATERIALS TRANSACTIONS JIM, 1990, 31 (02) :135-140
[8]   Combined electronic structure and evolutionary search approach to materials design -: art. no. 255506 [J].
Jóhannesson, GH ;
Bligaard, T ;
Ruban, AV ;
Skriver, HL ;
Jacobsen, KW ;
Norskov, JK .
PHYSICAL REVIEW LETTERS, 2002, 88 (25) :2555061-2555065
[9]  
Johansson T. P., 2012, THESIS TU DENMARK LY
[10]   Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals [J].
Kitchin, JR ;
Norskov, JK ;
Barteau, MA ;
Chen, JG .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (21) :10240-10246