On bilinear maps on matrices with applications to commutativity preservers

被引:42
作者
Bresar, M
Semrl, P
机构
[1] Univ Maribor, Dept Math, PEF, SI-2000 Maribor, Slovenia
[2] Univ Ljubljana, Dept Math, SI-1000 Ljubljana, Slovenia
关键词
matrix algebra; central simple algebra; functional identity; nonassociative product; Lie-admissible algebra; commutativity preserving map; D-FREE SUBSETS; FUNCTIONAL IDENTITIES; COMMUTING TRACES; LINEAR-MAPS; ALGEBRAS; RINGS;
D O I
10.1016/j.jalgebra.2005.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-n be the algebra of all n x n matrices over a commutative unital ring C, and let C be a C-module. Various characterizations of bilinear maps {.,.}: M-n x M-n -> L with the property that {x, y} = 0 whenever x any y commute are given. As the main application of this result we obtain the definitive solution of the problem of describing (not necessarily bijective) commutativity preserving linear maps from Mn into M, for the case where C is an arbitrary field; moreover, this description is valid in every finite-dimensional central simple algebra. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:803 / 837
页数:35
相关论文
共 14 条