Hearts of twin cotorsion pairs on extriangulated categories

被引:83
作者
Liu, Yu [1 ]
Nakaoka, Hiroyuki [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610051, Sichuan, Peoples R China
[2] Kagoshima Univ, Res Field Sci, Sci & Engn Area, Res & Educ Assembly, 1-21-35 Korimoto, Kagoshima 8900065, Japan
关键词
Extriangulated categories; Cotorsion pairs; Hearts; n-cluster tilting subcategories;
D O I
10.1016/j.jalgebra.2019.03.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the heart of a cotorsion pairs on an exact category and a triangulated category in a unified method, by means of the notion of an extriangulated category. We prove that the heart is abelian, and construct a cohomo-logical functor to the heart. If the extriangulated category has enough projectives, this functor gives an equivalence between the heart and the category of coherent functors over the coheart modulo projectives. We also show how an n-cluster tilting subcategory of an extriangulated category gives rise to a family of cotorsion pairs with equivalent hearts. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:96 / 149
页数:54
相关论文
共 25 条
[1]   General Heart Construction on a Triangulated Category (II): Associated Homological Functor [J].
Abe, Noriyuki ;
Nakaoka, Hiroyuki .
APPLIED CATEGORICAL STRUCTURES, 2012, 20 (02) :161-174
[2]  
BEILINSON AA, 1982, ASTERISQUE, V100
[3]  
Beligiannis A., 2011, HOMOL HOMOTOPY APPL, V2, P148
[4]  
Borceux F., 1994, ENCY MATH ITS APPL, V50
[5]   Cluster Subalgebras and Cotorsion Pairs in Frobenius Extriangulated Categories [J].
Chang, Wen ;
Zhou, Panyue ;
Zhu, Bin .
ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (05) :1051-1081
[6]   Quotients of exact categories by cluster tilting subcategories as module categories [J].
Demonet, Laurent ;
Liu, Yu .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (12) :2282-2297
[7]   Model structures on exact categories [J].
Gillespie, James .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (12) :2892-2902
[8]  
Happel D., 1988, Triangulated Categories in the Presentation Theory of Finite-Dimensional Algebras
[9]  
Herschend M., ARXIV170502246
[10]   Cotorsion pairs, model category structures, and representation theory [J].
Hovey, M .
MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (03) :553-592