Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry

被引:20
|
作者
Wang, Feng [1 ]
Zhang, Xuping [1 ]
Lu, Yuangang [1 ]
Dou, Rongrong [1 ]
Bao, Xiaoyi [2 ]
机构
[1] Nanjing Univ, Inst Opt Commun Engn, Nanjing 210093, Peoples R China
[2] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
基金
中国国家自然科学基金;
关键词
Brillouin optical time domain reflectometry (BOTDR); discrete Fourier transform (DFT); spatial resolution; Brillouin spectrum; DISTRIBUTED FIBER TEMPERATURE; COHERENT DETECTION; FREQUENCY-SHIFT; STRAIN; SCATTERING; BACKSCATTER; WINDOWS;
D O I
10.1088/0957-0233/20/2/025202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Discrete Fourier transform (DFT) requires many sampled points for a spectrum. We find that the spatial resolution of the DFT-based Brillouin optical time domain reflectometry (BOTDR) is determined by the pulse width of the probe light and the time length of the sampling data used to perform the DFT. The best spatial resolution is limited by the pulse width. At a certain sampling rate, the spatial resolution increases linearly with the number of points in DFT. The frequency uncertainty improves with the increased number. Window function restrains the spectral leakage significantly and can improve the spatial resolution. But when the influence of the spectral leakage can be neglected, the frequency uncertainty without a window function is better than that with a window function for the same spatial resolution.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Analysis of Bandwidth-reduced Local Oscillator in Brillouin Optical Time Domain Reflectometry
    Hao Yun-qi
    Ye Qing
    Pan Zheng-qing
    Cai Hai-wen
    Qu Rong-hui
    OPTICAL SENSORS AND BIOPHOTONICS III, 2011, 8311
  • [32] Discrete Fourier transform-based analysis of HeLa cell microtubules after ultrasonic exposure
    Novy, J
    Becvarova, P
    Skorpikova, J
    Mornstein, V
    Janisch, R
    MICROSCOPY RESEARCH AND TECHNIQUE, 2005, 68 (01) : 1 - 5
  • [33] The analysis of resolution of the discrete fractional Fourier transform
    Deng, Bing
    Tao, Ran
    ICICIC 2006: FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING, INFORMATION AND CONTROL, VOL 3, PROCEEDINGS, 2006, : 10 - +
  • [34] Fast Positioning of Brillouin Optical Time Domain Reflectometry Frequency Shift and Enhancement of Spatial Resolution Using Maximum-Seeking Method
    Huang Qiuming
    Chen Yingkai
    Liu Xinyu
    Chen Liping
    Gao Bo
    Fu Linlin
    Li Yongzheng
    Guo Linfeng
    Xu Xiaomin
    ACTA OPTICA SINICA, 2023, 43 (14)
  • [35] Optical frequency domain reflectometry based on real-time Fourier transformation
    Park, Yongwoo
    Ahn, Tae-Jung
    Kieffer, Jean-Claude
    Azana, Jose
    OPTICS EXPRESS, 2007, 15 (08): : 4597 - 4616
  • [36] Spatial Resolution Limitation by Rayleigh Scattering-Induced Noise in Brillouin Optical Correlation-Domain Reflectometry
    Mizuno, Yosuke
    Zou, Weiwen
    He, Zuyuan
    Hotate, Kazuo
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [37] DISCRETE FOURIER-TRANSFORM IN TIME DOMAIN SPECTROSCOPY
    DUTUIT, Y
    REVUE DE PHYSIQUE APPLIQUEE, 1979, 14 (11): : 939 - 945
  • [38] Distributed optical fiber sensing with Brillouin Optical Time Domain Reflectometry based on differential pulse pair
    Yu, Zhihua
    Zhang, Mingyu
    Dai, Haolong
    Liu, Li
    Zhang, Jingjing
    Jin, Xing
    Wang, Gaifang
    OPTICS AND LASER TECHNOLOGY, 2018, 105 : 89 - 93
  • [39] Influence of laser linewidth on performance of Brillouin optical time domain reflectometry
    郝蕴琦
    叶青
    潘政清
    蔡海文
    瞿荣辉
    Chinese Physics B, 2013, (07) : 261 - 265
  • [40] Probe pulse design in Brillouin optical time-domain reflectometry
    Li, Mupeng
    Xu, Tianhua
    Wang, Shuang
    Hu, Wenxiu
    Jiang, Junfeng
    Liu, Tiegen
    IET OPTOELECTRONICS, 2022, 16 (06) : 238 - 252