Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry

被引:20
|
作者
Wang, Feng [1 ]
Zhang, Xuping [1 ]
Lu, Yuangang [1 ]
Dou, Rongrong [1 ]
Bao, Xiaoyi [2 ]
机构
[1] Nanjing Univ, Inst Opt Commun Engn, Nanjing 210093, Peoples R China
[2] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
基金
中国国家自然科学基金;
关键词
Brillouin optical time domain reflectometry (BOTDR); discrete Fourier transform (DFT); spatial resolution; Brillouin spectrum; DISTRIBUTED FIBER TEMPERATURE; COHERENT DETECTION; FREQUENCY-SHIFT; STRAIN; SCATTERING; BACKSCATTER; WINDOWS;
D O I
10.1088/0957-0233/20/2/025202
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Discrete Fourier transform (DFT) requires many sampled points for a spectrum. We find that the spatial resolution of the DFT-based Brillouin optical time domain reflectometry (BOTDR) is determined by the pulse width of the probe light and the time length of the sampling data used to perform the DFT. The best spatial resolution is limited by the pulse width. At a certain sampling rate, the spatial resolution increases linearly with the number of points in DFT. The frequency uncertainty improves with the increased number. Window function restrains the spectral leakage significantly and can improve the spatial resolution. But when the influence of the spectral leakage can be neglected, the frequency uncertainty without a window function is better than that with a window function for the same spatial resolution.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Strain variation measurement with short-time Fourier transform-based Brillouin optical time-domain reflectometry sensing system
    Tu, Guojie
    Zhang, Xuping
    Zhang, Yixin
    Ying, Zhoufeng
    Lv, Lidong
    ELECTRONICS LETTERS, 2014, 50 (22) : 1624 - 1625
  • [2] Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry
    Koyamada, Y.
    Sakairi, Y.
    Takeuchi, N.
    Adachi, S.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (21-24) : 1910 - 1912
  • [3] Discrete Fourier transform-based method for analysis of a vibrato tone
    Pang, Hee-Suk
    Lim, Jun-seok
    Lee, Seokjin
    JOURNAL OF NEW MUSIC RESEARCH, 2020, 49 (04) : 307 - 319
  • [4] Brillouin optical spatial Fourier domain analyzer
    Asraf, Sagie
    Meiri, Amihai
    Lubat, Jonathan
    Shemer, Amir
    Zalevsky, Zeev
    OPTICAL ENGINEERING, 2015, 54 (01)
  • [5] Determination of thermal residual strain in cabled optical fiber with high spatial resolution by Brillouin optical time-domain reflectometry
    Lu, Yuangang
    Li, Cunlei
    Zhang, Xuping
    Yam, Scott
    OPTICS AND LASERS IN ENGINEERING, 2011, 49 (9-10) : 1111 - 1117
  • [6] Computational Brillouin Optical Time-Domain Reflectometry
    Shu, Dayong
    Guo, Xinyue
    Lv, Tuo
    Zhou, Da-Peng
    Peng, Wei
    Chen, Liang
    Bao, Xiaoyi
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (09) : 3467 - 3473
  • [7] Computational Brillouin Optical Time-Domain Reflectometry
    Guo, Xinyue
    Zhou, Da-Peng
    Peng, Wei
    AOPC 2023:OPTIC FIBER GYRO, 2023, 12968
  • [8] Recent Advances in Brillouin Optical Time Domain Reflectometry
    Bai, Qing
    Wang, Qinglin
    Wang, Dong
    Wang, Yu
    Gao, Yan
    Zhang, Hongjuan
    Zhang, Mingjiang
    Jin, Baoquan
    SENSORS, 2019, 19 (08):
  • [9] High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating
    Song, Kwang Yong
    Yoon, Hyuk Jin
    OPTICS LETTERS, 2010, 35 (01) : 52 - 54
  • [10] Analysis of adaptive short-time Fourier transform-based synchrosqueezing transform
    Cai, Haiyan
    Jiang, Qingtang
    Li, Lin
    Suter, Bruce W.
    ANALYSIS AND APPLICATIONS, 2021, 19 (01) : 71 - 105