A machine learning approach for identification and classification of symbiotic stars using 2MASS and WISE

被引:41
作者
Akras, Stavros [1 ,2 ]
Leal-Ferreira, Marcelo L. [3 ,4 ]
Guzman-Ramirez, Lizette [3 ,5 ]
Ramos-Larios, Gerardo [6 ]
机构
[1] Observ Nacl MCTI, Rua Gen Jose Cristino 77, BR-20921400 Rio De Janeiro, Brazil
[2] Univ Fed Rio De Janeiro, Observ Valongo, Ladeira Pedro Antonio 43, BR-20080090 Rio De Janeiro, Brazil
[3] Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
[4] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[5] European Southern Observ, Alonso Cordova 3107, Santiago 19001, Chile
[6] Inst Astron & Meteorol, Av Vallarta 2602, Guadalajara 44130, Jalisco, Mexico
基金
美国国家科学基金会;
关键词
methods: data analysis; methods: statistical; general: catalogues; stars: binaries: symbiotic; stars: fundamental parameters; TERM PHOTOMETRIC VARIABILITY; HERBIG AE/BE STARS; GIANT BRANCH STARS; SPITZER C2D SURVEY; H-ALPHA SURVEY; PLANETARY-NEBULAE; CATACLYSMIC VARIABLES; INFRARED PHOTOMETRY; GALACTIC PLANE; ROTOR-PROGRAM;
D O I
10.1093/mnras/sty3359
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this second paper in a series of papers based on the most-up-to-date catalogue of symbiotic stars (SySts), we present a new approach for identifying and distinguishing SySts from other H alpha emitters in photometric surveys using machine learning algorithms such as classification tree, linear discriminant analysis, and K-nearest neighbour. The motivation behind this work is to seek for possible colour indices in the regime of near- and mid-infrared covered by the 2MASS and WISE surveys. A number of diagnostic colour-colour diagrams are generated for all the known Galactic SySts and several classes of stellar objects that mimic SySts such as planetary nebulae, post-AGB, Mira, single K and M giants, cataclysmic variables, Be, AeBe, YSO, weak and classical T Tauri stars, and Wolf-Rayet. The classification tree algorithm unveils that primarily J-H, W1-W4, and K-s-W3, and secondarily, H-W2, W1-W2, and W3-W4 are ideal colour indices to identify SySts. Linear discriminant analysis method is also applied to determine the linear combination of 2MASS and AllWISE magnitudes that better distinguish SySts. The probability of a source being an SySt is determined using the K-nearest neighbour method on the LDA components. By applying our classification tree model to the list of candidate SySts (Paper I), the IPHAS list of candidate SySts, and the DR2 VPHAS + catalogue, we find 125 (72 new candidates) sources that pass our criteria while we also recover 90 per cent of the known Galactic SySts.
引用
收藏
页码:5077 / 5104
页数:28
相关论文
共 50 条
  • [41] Optical properties of amorphous carbon dust around C-stars: new constraints from 2MASS and Gaia observations
    Nanni, Ambra
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (04) : 4726 - 4732
  • [42] Efficient identification of broad absorption line quasars using dimensionality reduction and machine learning
    Kao, Wei-Bo
    Zhang, Yanxia
    Wu, Xue-Bing
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2024, 76 (04) : 653 - 665
  • [43] Galaxy stellar and total mass estimation using machine learning
    Chu, Jiani
    Tang, Hongming
    Xu, Dandan
    Lu, Shengdong
    Long, Richard
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 528 (04) : 6354 - 6369
  • [44] A reevaluation of the 2MASS zero points using CALSPEC spectrophotometry complemented with Gaia Data Release 2 parallaxes
    Maiz Apellaniz, J.
    Pantaleoni Gonzalez, M.
    ASTRONOMY & ASTROPHYSICS, 2018, 616
  • [45] Occurrence rates of planets orbiting M Stars: applying ABC to Kepler DR25, Gaia DR2, and 2MASS data
    Hsu, Danley C.
    Ford, Eric B.
    Terrien, Ryan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (02) : 2249 - 2262
  • [46] The miniJPAS survey: star-galaxy classification using machine learning
    Baqui, P. O.
    Marra, V.
    Casarini, L.
    Angulo, R.
    Diaz-Garcia, L. A.
    Hernandez-Monteagudo, C.
    Lopes, P. A. A.
    Lopez-Sanjuan, C.
    Muniesa, D.
    Placco, V. M.
    Quartin, M.
    Queiroz, C.
    Sobral, D.
    Solano, E.
    Tempel, E.
    Varela, J.
    Vilchez, J. M.
    Abramo, R.
    Alcaniz, J.
    Benitez, N.
    Bonoli, S.
    Carneiro, S.
    Cenarro, A. J.
    Cristobal-Hornillos, D.
    de Amorim, A. L.
    de Oliveira, C. M.
    Dupke, R.
    Ederoclite, A.
    Gonzalez Delgado, R. M.
    Marin-Franch, A.
    Moles, M.
    Ramio, H. Vazquez
    Sodre, L.
    Taylor, K.
    ASTRONOMY & ASTROPHYSICS, 2021, 645 (645)
  • [47] A machine learning approach to galaxy properties: joint redshift-stellar mass probability distributions with Random Forest
    Mucesh, S.
    Hartley, W. G.
    Palmese, A.
    Lahav, O.
    Whiteway, L.
    Bluck, A. F. L.
    Alarcon, A.
    Amon, A.
    Bechtol, K.
    Bernstein, G. M.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Choi, A.
    Eckert, K.
    Everett, S.
    Gruen, D.
    Gruendl, R. A.
    Harrison, I
    Huff, E. M.
    Kuropatkin, N.
    Sevilla-Noarbe, I
    Sheldon, E.
    Yanny, B.
    Aguena, M.
    Allam, S.
    Bacon, D.
    Bertin, E.
    Bhargava, S.
    Brooks, D.
    Carretero, J.
    Castander, F. J.
    Conselice, C.
    Costanzi, M.
    Crocce, M.
    da Costa, L. N.
    Pereira, M. E. S.
    De Vicente, J.
    Desai, S.
    Diehl, H. T.
    Drlica-Wagner, A.
    Evrard, A. E.
    Ferrero, I
    Flaugher, B.
    Fosalba, P.
    Frieman, J.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Gerdes, D. W.
    Gschwend, J.
    Gutierrez, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 502 (02) : 2770 - 2786
  • [48] A machine learning based approach to gravitational lens identification with the International LOFAR Telescope
    Rezaei, S.
    McKean, J. P.
    Biehl, M.
    de Roo, W.
    Lafontaine, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 517 (01) : 1156 - 1170
  • [49] DYNAMICAL MASS MEASUREMENTS OF CONTAMINATED GALAXY CLUSTERS USING MACHINE LEARNING
    Ntampaka, M.
    Trac, H.
    Sutherland, D. J.
    Fromenteau, S.
    Poczos, B.
    Schneider, J.
    ASTROPHYSICAL JOURNAL, 2016, 831 (02)
  • [50] Machine learning for galactic archaeology: a chemistry-based neural network method for identification of accreted disc stars
    Tronrud, Thorold
    Tissera, Patricia B.
    Gomez, Facundo A.
    Grand, Robert J. J.
    Pakmor, Ruediger
    Marinacci, Federico
    Simpson, Christine M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 515 (03) : 3818 - 3837