A machine learning approach for identification and classification of symbiotic stars using 2MASS and WISE

被引:41
作者
Akras, Stavros [1 ,2 ]
Leal-Ferreira, Marcelo L. [3 ,4 ]
Guzman-Ramirez, Lizette [3 ,5 ]
Ramos-Larios, Gerardo [6 ]
机构
[1] Observ Nacl MCTI, Rua Gen Jose Cristino 77, BR-20921400 Rio De Janeiro, Brazil
[2] Univ Fed Rio De Janeiro, Observ Valongo, Ladeira Pedro Antonio 43, BR-20080090 Rio De Janeiro, Brazil
[3] Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
[4] Univ Bonn, Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany
[5] European Southern Observ, Alonso Cordova 3107, Santiago 19001, Chile
[6] Inst Astron & Meteorol, Av Vallarta 2602, Guadalajara 44130, Jalisco, Mexico
基金
美国国家科学基金会;
关键词
methods: data analysis; methods: statistical; general: catalogues; stars: binaries: symbiotic; stars: fundamental parameters; TERM PHOTOMETRIC VARIABILITY; HERBIG AE/BE STARS; GIANT BRANCH STARS; SPITZER C2D SURVEY; H-ALPHA SURVEY; PLANETARY-NEBULAE; CATACLYSMIC VARIABLES; INFRARED PHOTOMETRY; GALACTIC PLANE; ROTOR-PROGRAM;
D O I
10.1093/mnras/sty3359
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this second paper in a series of papers based on the most-up-to-date catalogue of symbiotic stars (SySts), we present a new approach for identifying and distinguishing SySts from other H alpha emitters in photometric surveys using machine learning algorithms such as classification tree, linear discriminant analysis, and K-nearest neighbour. The motivation behind this work is to seek for possible colour indices in the regime of near- and mid-infrared covered by the 2MASS and WISE surveys. A number of diagnostic colour-colour diagrams are generated for all the known Galactic SySts and several classes of stellar objects that mimic SySts such as planetary nebulae, post-AGB, Mira, single K and M giants, cataclysmic variables, Be, AeBe, YSO, weak and classical T Tauri stars, and Wolf-Rayet. The classification tree algorithm unveils that primarily J-H, W1-W4, and K-s-W3, and secondarily, H-W2, W1-W2, and W3-W4 are ideal colour indices to identify SySts. Linear discriminant analysis method is also applied to determine the linear combination of 2MASS and AllWISE magnitudes that better distinguish SySts. The probability of a source being an SySt is determined using the K-nearest neighbour method on the LDA components. By applying our classification tree model to the list of candidate SySts (Paper I), the IPHAS list of candidate SySts, and the DR2 VPHAS + catalogue, we find 125 (72 new candidates) sources that pass our criteria while we also recover 90 per cent of the known Galactic SySts.
引用
收藏
页码:5077 / 5104
页数:28
相关论文
共 50 条
  • [21] RELIABLE IDENTIFICATIONS OF ACTIVE GALACTIC NUCLEI FROM THE WISE, 2MASS, AND ROSAT ALL-SKY SURVEYS
    Edelson, R.
    Malkan, M.
    ASTROPHYSICAL JOURNAL, 2012, 751 (01)
  • [22] A new implementation of the infrared flux method using the 2MASS catalogue
    Hernandez, J. I. Gonzalez
    Bonifacio, P.
    ASTRONOMY & ASTROPHYSICS, 2009, 497 (02) : 497 - 509
  • [23] Hubble Tarantula Treasury Project - VI. Identification of pre-main-sequence stars using machine-learning techniques
    Ksoll, Victor F.
    Gouliermis, Dimitrios A.
    Klessen, Ralf S.
    Grebel, Eva K.
    Sabbi, Elena
    Anderson, Jay
    Lennon, Daniel J.
    Cignoni, Michele
    de Marchi, Guido
    Smith, Linda J.
    Tosim, Monica
    van der Marel, Roeland P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (02) : 2389 - 2414
  • [24] Image feature extraction and galaxy classification: a novel and efficient approach with automated machine learning
    Tarsitano, F.
    Bruderer, C.
    Schawinski, K.
    Hartley, W. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 511 (03) : 3330 - 3338
  • [25] AKARI's infrared view on nearby stars Using AKARI infrared camera all-sky survey, 2MASS, and Hipparcos catalogs
    Ita, Y.
    Matsuura, M.
    Ishihara, D.
    Oyabu, S.
    Takita, S.
    Kataza, H.
    Yamamura, I.
    Matsunaga, N.
    Tanabe, T.
    Nakada, Y.
    Fujiwara, H.
    Wada, T.
    Onaka, T.
    Matsuhara, H.
    ASTRONOMY & ASTROPHYSICS, 2010, 514
  • [26] Machine-learning identification of galaxies in the WISE x SuperCOSMOS all-sky catalogue
    Krakowski, T.
    Malek, K.
    Bilicki, M.
    Pollo, A.
    Kurcz, A.
    Krupa, M.
    ASTRONOMY & ASTROPHYSICS, 2016, 596
  • [27] Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification
    Hayes, J. J. C.
    Kerins, E.
    Awiphan, S.
    McDonald, I
    Morgan, J. S.
    Chuanraksasat, P.
    Komonjinda, S.
    Sanguansak, N.
    Kittara, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 494 (03) : 4492 - 4508
  • [28] A machine learning approach to correct for mass resolution effects in simulated halo clustering statistics
    Forero-Sanchez, Daniel
    Chuang, Chia-Hsun
    Rodriguez-Torres, Sergio
    Yepes, Gustavo
    Gottloeber, Stefan
    Zhao, Cheng
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (03) : 4318 - 4331
  • [29] Protostellar classification using supervised machine learning algorithms
    Miettinen, O.
    ASTROPHYSICS AND SPACE SCIENCE, 2018, 363 (09)
  • [30] Protostellar classification using supervised machine learning algorithms
    O. Miettinen
    Astrophysics and Space Science, 2018, 363