Modified function projective lag synchronization of chaotic systems with disturbance estimations

被引:20
作者
Gao, Yanbo [1 ]
Sun, Binghua [1 ]
Lu, Guoping [2 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226007, Jiangsu, Peoples R China
[2] Nantong Univ, Sch Elect Engn, Nantong 226019, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Active sliding mode control; Chaotic systems; External disturbances; Modified function projective lag; synchronization (MFPLS); H-INFINITY SYNCHRONIZATION; MASTER-SLAVE SYNCHRONIZATION; DYNAMIC OUTPUT-FEEDBACK; LURE SYSTEMS; GENERALIZED SYNCHRONIZATION; CRITERIA; OBSERVER; DESIGN; PHASE;
D O I
10.1016/j.apm.2012.09.058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper addresses the modified function projective lag synchronization (MFPLS) for a class of chaotic systems with unknown external disturbances. The disturbances are supposed to be generated by the exogenous systems. By using the disturbance-observer-based control and the linear matrix inequality approach, the disturbance observers are developed to ensure the boundedness of the disturbance error dynamics. Then by employing the sliding mode control (SMC) technique, an active SMC law is established to guarantee the disturbance rejection and realize MFPLS between the master and slave systems. And the corresponding numerical simulation is provided to illustrate the effectiveness of the proposed method. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4993 / 5000
页数:8
相关论文
共 36 条
[1]   An H∞ approach to anti-synchronization for chaotic systems [J].
Ahn, Choon Ki .
PHYSICS LETTERS A, 2009, 373 (20) :1729-1733
[2]   Characterization of intermittent lag synchronization [J].
Boccaletti, S ;
Valladares, DL .
PHYSICAL REVIEW E, 2000, 62 (05) :7497-7500
[3]   Modified projective synchronization of chaotic systems with disturbances via active sliding mode control [J].
Cai, Na ;
Jing, Yuanwei ;
Zhang, Siying .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) :1613-1620
[4]   Disturbance observer based control for nonlinear systems [J].
Chen, WH .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2004, 9 (04) :706-710
[5]   Global synchronization criteria for a class of third-order non-autonomous chaotic systems via linear state error feedback control [J].
Chen, Yun ;
Wu, Xiaofeng ;
Gui, Zhifang .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (12) :4161-4170
[6]   Robust chaos synchronization of noise-perturbed chaotic systems with multiple time-delays [J].
Cheng, Chun-Kai ;
Kuo, Hang-Hong ;
Hou, Yi-You ;
Hwang, Chi-Chuan ;
Liao, Teh-Lu .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (13) :3093-3102
[7]   Function projective synchronization of different chaotic systems with uncertain parameters [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
PHYSICS LETTERS A, 2008, 372 (33) :5402-5410
[8]   A general method for modified function projective lag synchronization in chaotic systems [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Lue, Ning .
PHYSICS LETTERS A, 2010, 374 (13-14) :1493-1496
[9]   Modified function projective synchronization of chaotic system [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
CHAOS SOLITONS & FRACTALS, 2009, 42 (04) :2399-2404
[10]  
Hale J.K., 1993, Introduction to Functional Differntial Equations