Boundary treatment effects on molecular dynamics simulations of interface thermal resistance

被引:63
作者
Barisik, Murat [1 ]
Beskok, Ali [1 ]
机构
[1] Old Dominion Univ, Inst Micro & Nanotechnol, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA
基金
美国国家科学基金会;
关键词
Liquid/solid interface; Thermostat effects; Thermal resistance; Kapitza resistance; Kapitza length; KAPITZA RESISTANCE; CONDUCTIVITY; ARGON; SIZE; FLOW;
D O I
10.1016/j.jcp.2012.07.026
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Molecular Dynamics simulations of heat conduction in liquid Argon confined in Silver nano-channels are performed subject to three different thermal conditions. Particularly, different surface temperatures are imposed on Silver domains using a thermostat in all and limited number of solid layers, resulting in heat flux in the liquid domain. Alternatively, energy is injected and extracted from solid layers to create a NVE liquid Argon system, which corresponds to heat flux specification. Imposition of a constant temperature region in the solid domain results in an unphysical temperature jump, indicating the presence of an artificial thermal resistance induced by the thermostat. Thermal resistance analyses for the components of each case are performed to distinguish the artificial and interface thermal resistance effects. Constant wall temperature simulations are shown to exhibit superposition of the artificial and interface thermal resistance values at the liquid/solid interface, while applying thermostat on wall layers sufficiently away from the liquid/solid interface results in consistent predictions of the interface thermal resistance. Injecting and extracting energy from each solid layer eliminates the artificial resistance. However, the method cannot directly specify a desired temperature difference between the two solid domains. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:7881 / 7892
页数:12
相关论文
共 31 条
[1]   Predicting trends in rate parameters for self-diffusion on FCC metal surfaces [J].
Agrawal, PM ;
Rice, BM ;
Thompson, DL .
SURFACE SCIENCE, 2002, 515 (01) :21-35
[2]  
Allen M. P., 2017, COMPUTER SIMULATION
[3]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[4]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[5]   Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (07)
[6]  
EVANS DJ, 1986, ANNU REV FLUID MECH, V18, P243
[7]  
FOILES SM, 1986, PHYS REV B, V33, P7983, DOI 10.1103/PhysRevB.33.7983
[9]   Evaluation of momentum conservation influence in non-equilibrium molecular dynamics methods to compute thermal conductivity [J].
Huang, ZX ;
Tang, ZA .
PHYSICA B-CONDENSED MATTER, 2006, 373 (02) :291-296
[10]   THE STATISTICAL MECHANICAL THEORY OF TRANSPORT PROCESSES .4. THE EQUATIONS OF HYDRODYNAMICS [J].
IRVING, JH ;
KIRKWOOD, JG .
JOURNAL OF CHEMICAL PHYSICS, 1950, 18 (06) :817-829