Study of the NO2 sensing mechanism of PEDOT-RGO film using in situ Raman Spectroscopy

被引:30
作者
Dunst, K. J. [1 ]
Trzcinski, K. [2 ]
Scheibe, B. [3 ]
Sawczak, M. [4 ]
Jasinski, P. [1 ]
机构
[1] Gdansk Univ Technol, Fac Elect Telecommun & Informat, Narutowicza 11-12, PL-80233 Gdansk, Poland
[2] Gdansk Univ Technol, Fac Chem, Narutowicza 11-12, PL-80233 Gdansk, Poland
[3] Adam Mickiewicz Univ, NanoBioMed Ctr, Umultowska 85, PL-61614 Poznan, Poland
[4] Polish Acad Sci, Inst Fluid Flow Machinery, Fiszera 14, PL-80231 Gdansk, Poland
关键词
In situ Raman spectroscopy; PEDOT-RGO; NO2 gas sensor; CHEMICALLY-MODIFIED ELECTRODES; REDUCED GRAPHENE OXIDE; ELECTROCHEMICAL OXIDATION; IMPEDANCE SPECTROSCOPY; COUNTER ELECTRODE; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); SENSOR; POLYPYRROLE; POLYANILINE; NANOCOMPOSITE;
D O I
10.1016/j.snb.2018.01.089
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work, the mechanism of the NO2 reaction with PEDOT-RGO composite film has been investigated via in situ Raman spectroscopy. Reduced graphene oxide (RGO), poly(3,4-ethylenedioxytiophene)-reduced graphene oxide (PEDOT-RGO) and poly(3,4-ethylenedioxytiophene)/ClO4- (PEDOT/ClO4-) films were fabricated using an electrodeposition method method and used as resistance sensors of gaseous nitrogen dioxide. The experimental results indicate that NO2 causes overoxidation of the PEDOT polymer (PEDOT/ClO4- film) which leads to resistance increase and irreversible response. In contrast, the PEDOT-RGO response in the presence of NO2 is reversible. During short NO2 exposure, PEDOT from the PEDOT-RGO composite does not react to the gas but the presence of RGO in the PEDOT-RGO composite does not affect the overoxidation potential. It was found that the nitrogen dioxide reacts more readily to reduced graphene oxide, thus RGO "protects" the polymer against the adverse overoxidation process. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1025 / 1033
页数:9
相关论文
共 66 条
[1]   Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) from a dimer precursor [J].
Akoudad, S ;
Roncali, J .
SYNTHETIC METALS, 1998, 93 (02) :111-114
[2]   An Inkjet Printed CO2 Gas Sensor [J].
Ando, B. ;
Baglio, S. ;
Di Pasquale, G. ;
Pollicino, A. ;
D'Agata, S. ;
Gugliuzzo, C. ;
Lombardo, C. ;
Re, G. .
EUROSENSORS 2015, 2015, 120 :628-631
[3]  
[Anonymous], P 14 INT M CHEM SENS
[4]  
[Anonymous], 2014, SENSOR LETT, DOI DOI 10.1166/SL.2014.3215
[5]   Investigation of boron modified graphene nanostructures; optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets [J].
Armakovic, Stevan ;
Armakovic, Sanja J. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2016, 98 :156-166
[6]   Raman characterization of defects and dopants in graphene [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Novotny, Lukas .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (08)
[7]   INSITU RAMAN STUDIES OF POLYPYRROLE FORMATION ON A SILVER ELECTRODE [J].
BUKOWSKA, J ;
JACKOWSKA, K .
ELECTROCHIMICA ACTA, 1990, 35 (02) :315-317
[8]   INSITU RAMAN STUDIES OF POLYPYRROLE AND POLYTHIOPHENE FILMS ON PT ELECTRODES [J].
BUKOWSKA, J ;
JACKOWSKA, K .
SYNTHETIC METALS, 1990, 35 (1-2) :143-150
[9]   Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode [J].
Chaiyo, Sudkate ;
Mehmeti, Eda ;
Zagar, Kristina ;
Siangproh, Weena ;
Chailapakul, Orawon ;
Kalcher, Kurt .
ANALYTICA CHIMICA ACTA, 2016, 918 :26-34
[10]   Low-temperature solution-processable Ni(OH)2 ultrathin nanosheet/N-graphene nanohybrids for high-performance supercapacitor electrodes [J].
Chang, Haixin ;
Kang, Jianli ;
Chen, Luyang ;
Wang, Junqliang ;
Ohmura, Kazuyo ;
Chen, Na ;
Fujita, Takeshi ;
Wu, Hongkai ;
Chen, Mingwei .
NANOSCALE, 2014, 6 (11) :5960-5966