Early Cretaceous to Cenozoic Growth of the Patagonian Andes as Revealed by Low-Temperature Thermochronology

被引:9
|
作者
Ronda, Gonzalo [1 ]
Ghiglione, Matias C. [1 ]
Martinod, Joseph [2 ]
Barberon, Vanesa [1 ]
Ramos, Miguel E. [1 ]
Coutand, Isabelle [3 ]
Grujic, Djordje [3 ]
Kislitsyn, Roman [3 ]
机构
[1] Univ Buenos Aires, CONICET, Inst Estudios Andinos Don Pablo Groeber, Buenos Aires, DF, Argentina
[2] Univ Savoie Mt Blanc, Chambery, France
[3] Dalhousie Univ, Dept Earth & Environm Sci, Halifax, NS, Canada
关键词
zircon (U-Th); He; apatite fission track; low-temperature thermochronology; inverse thermal modeling; Patagonian Andes; AUSTRAL-MAGALLANES BASIN; ROCAS VERDES BASIN; SOUTH-AMERICA; STRUCTURAL EVOLUTION; TECTONIC EVOLUTION; HELIUM DIFFUSION; RIDGE COLLISION; BROKEN FORELAND; SLAB-WINDOW; CHILE;
D O I
10.1029/2021TC007113
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Southern Patagonian Andes at the latitude of the Chile Triple junction in Argentina and Chile (46 degrees-47.5 degrees S) are the object of an ongoing discussion regarding their orogenic evolution in terms of tectonic crustal thickening and exhumation. Recent works point to an Early Cretaceous onset of shortening according to observations in foreland sequences. The ensuing Cenozoic thermal history of the region was influenced by increased shortening, oceanic-ridge collision and formation of asthenospheric windows in a dynamic subduction setting. Furthermore, the onset of Patagonian glaciations after 7 Ma added increased complexities to the analysis of the main drivers of crustal cooling in this region. We applied zircon (U-Th)/He and apatite fission track thermochronometry, and inverse thermal modeling to unravel the thermal history throughout different structural domains of the Patagonian Andes. New thermochronological data and thermal models showed a previously unrecognized set of Cretaceous cooling ages (120-80 Ma) toward the foreland, that we relate to the onset of contraction during initial tectonic inversion. Toward the hinterland, Cenozoic cooling ages predominate, and are related to Oligocene-Miocene contraction in response to increased subduction velocities. Based on the regional distribution of thermochronological ages and on results from thermal modeling, a resetting of the zircon (U-Th)/He and apatite fission track systems in response to crustal heating related to the formation of an asthenospheric window after 16 Ma appears unlikely. After 7 Ma cooling rates increased in response to enhanced glacial erosion.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Study on Late Cretaceous-Cenozoic exhumation of the Yanji area, NE China: insights from low-temperature thermochronology
    Li, Xiaoming
    ACTA GEOCHIMICA, 2019, 38 (06) : 815 - 833
  • [2] Cenozoic exhumation of the Tianshan as constrained by regional low-temperature thermochronology
    Wang, Yannan
    Zhang, Jin
    Huang, Xiao
    Wang, Zhenjiang
    EARTH-SCIENCE REVIEWS, 2023, 237
  • [3] Miocene development of alpine glacial relief in the Patagonian Andes, as revealed by low-temperature thermochronometry
    Christeleit, Elizabeth C.
    Brandon, Mark T.
    Shuster, David L.
    EARTH AND PLANETARY SCIENCE LETTERS, 2017, 460 : 152 - 163
  • [4] Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology
    Jing Liu-Zeng
    Zhang, Jinyu
    McPhillips, Devin
    Reiners, Peter
    Wei Wang
    Pik, Raphael
    Zeng, Lingsen
    Hoke, Greg
    Xie, Kejia
    Ping Xiao
    Zheng, Dewen
    Ge, Yukui
    EARTH AND PLANETARY SCIENCE LETTERS, 2018, 490 : 62 - 76
  • [5] Study on Late Cretaceous-Cenozoic exhumation of the Yanji area, NE China: insights from low-temperature thermochronology
    Xiaoming Li
    Acta Geochimica, 2019, 38 : 815 - 833
  • [6] Study on Late Cretaceous-Cenozoic exhumation of the Yanji area,NE China: insights from low-temperature thermochronology
    Xiaoming Li
    Acta Geochimica, 2019, (06) : 815 - 833
  • [7] Cenozoic Exhumation of the Ailaoshan-Red River Shear Zone: New Insights From Low-Temperature Thermochronology
    Wang, Yang
    Wang, Yuejun
    Schoenbohm, Lindsay M.
    Zhang, Peizhen
    Zhang, Bo
    Sobel, Edward R.
    Zhou, Renjie
    Shi, Xuhua
    Zhang, Jinjiang
    Stockli, Daniel F.
    Guo, Xiaofei
    TECTONICS, 2020, 39 (09)
  • [8] Post-Early Cretaceous denudation history of the northeastern Sichuan Basin constraints from low-temperature thermochronology profiles
    Tian Yun-Tao
    Zhu Chuan-Qing
    Xu Ming
    Rao Song
    Kohn, Barry P.
    Hu Sheng-Biao
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2011, 54 (03): : 807 - 816
  • [9] Cenozoic tectonic evolution of southeastern Thailand derived from low-temperature thermochronology
    Nachtergaele, Simon
    Glorie, Stijn
    Morley, Christopher
    Charusiri, Punya
    Kanjanapayont, Pitsanupong
    Vermeesch, Pieter
    Carter, Andrew
    Van Ranst, Gerben
    De Grave, Johan
    JOURNAL OF THE GEOLOGICAL SOCIETY, 2020, 177 (02) : 395 - 411
  • [10] The exhumation process of Mufushan granite in Jiangnan uplift since Cenozoic: Evidence from low-temperature thermochronology
    Shi Hong-Cai
    Shi Xiao-Bin
    Yang Xiao-Qiu
    Jiang Hai-Yan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (06): : 1945 - 1957