KAM theory for the reversible perturbations of 2D linear beam equations

被引:7
作者
Ge, Chuanfang [1 ]
Geng, Jiansheng [1 ]
Lou, Zhaowei [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
KAM theory; Reversible vector field; Beam equation; Quasi-periodic solutions; Birkhoff normal form; QUASI-PERIODIC SOLUTIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; REDUCIBILITY; TORI;
D O I
10.1007/s00209-020-02575-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we prove an infinite dimensional reversible Kolmogorov-Arnold-Moser (KAM) theorem. As an application, we study the existence of KAM tori for a class of two dimensional (2D) non-Hamiltonian completely resonant beam equations with derivative nonlinearities. The Birkhoff normal form theory is also used since there are no external parameters in the equations.
引用
收藏
页码:1693 / 1731
页数:39
相关论文
共 40 条
[21]   KAM tori for higher dimensional beam equations with constant potentials [J].
Geng, Jiansheng ;
You, Jiangong .
NONLINEARITY, 2006, 19 (10) :2405-2423
[22]   A KAM Theorem for Higher Dimensional Nonlinear Schrodinger Equations [J].
Geng, Jiansheng ;
You, Jiangong .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2013, 25 (02) :451-476
[23]   An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrodinger equation [J].
Geng, Jiansheng ;
Xu, Xindong ;
You, Jiangong .
ADVANCES IN MATHEMATICS, 2011, 226 (06) :5361-5402
[24]   A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces [J].
Geng, JS ;
You, JG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (02) :343-372
[25]  
Kappeler T., 2003, KdV KAM
[26]   Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation [J].
Kuksin, S ;
Poschel, J .
ANNALS OF MATHEMATICS, 1996, 143 (01) :149-179
[27]  
KUKSIN S, 1998, REV MATH MATH PHYS, V0010, P00064
[28]  
Kuksin S., 1987, Funktsional. Anal. i Prilozhen., V21, P22
[29]   A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations [J].
Liu, Jianjun ;
Yuan, Xiaoping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (03) :629-673
[30]   Quasi-periodic solutions for d-dimensional beam equation with derivative nonlinear perturbation [J].
Mi, Lufang ;
Cong, Hongzi .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)