KAM theory for the reversible perturbations of 2D linear beam equations

被引:7
作者
Ge, Chuanfang [1 ]
Geng, Jiansheng [1 ]
Lou, Zhaowei [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
KAM theory; Reversible vector field; Beam equation; Quasi-periodic solutions; Birkhoff normal form; QUASI-PERIODIC SOLUTIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; REDUCIBILITY; TORI;
D O I
10.1007/s00209-020-02575-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we prove an infinite dimensional reversible Kolmogorov-Arnold-Moser (KAM) theorem. As an application, we study the existence of KAM tori for a class of two dimensional (2D) non-Hamiltonian completely resonant beam equations with derivative nonlinearities. The Birkhoff normal form theory is also used since there are no external parameters in the equations.
引用
收藏
页码:1693 / 1731
页数:39
相关论文
共 40 条
[1]  
[Anonymous], 1993, LECT NOTES MATH
[2]  
[Anonymous], 2000, Panoramas and Syntheses
[3]   KAM for quasi-linear KdV [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
COMPTES RENDUS MATHEMATIQUE, 2014, 352 (7-8) :603-607
[4]   KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
MATHEMATISCHE ANNALEN, 2014, 359 (1-2) :471-536
[5]  
Bambusi D, 2019, ANN HENRI POINCARE, V20, P1893, DOI 10.1007/s00023-019-00795-2
[6]   REDUCIBILITY OF THE QUANTUM HARMONIC OSCILLATOR IN d-DIMENSIONS WITH POLYNOMIAL TIME-DEPENDENT PERTURBATION [J].
Bambusi, Dario ;
Grebert, Benoit ;
Maspero, Alberto ;
Robert, Didier .
ANALYSIS & PDE, 2018, 11 (03) :775-799
[7]   KAM for Reversible Derivative Wave Equations [J].
Berti, Massimiliano ;
Biasco, Luca ;
Procesi, Michela .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :905-955
[8]  
Berti M, 2013, ANN SCI ECOLE NORM S, V46, P301
[9]   Quasi-periodic solutions with Sobolev regularity of NLS on Td with a multiplicative potential [J].
Berti, Massimiliano ;
Bolle, Philippe .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :229-286
[10]   Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations [J].
Bourgain, J .
ANNALS OF MATHEMATICS, 1998, 148 (02) :363-439