Cross-subjects Emotions Classification from EEG Signals using a Hierarchical LSTM based Classifier

被引:9
作者
Badicu, Bogdan [1 ]
Udrea, Andreea [1 ]
机构
[1] Univ Politehn Bucuresti, Dept Automat Control & Syst Engn, Bucharest, Romania
来源
2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB) | 2019年
关键词
EEG signals; LSTM neural networks; single subject and cross subjects emotions classification; RECOGNITION;
D O I
10.1109/ehb47216.2019.8969881
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This article focuses on cross subjects' emotions classification from electroencephalogram signals (EEG). We propose a hierarchical classifier based on Long Short Term Memory (LSTM) neural networks for this task. For model training and testing, we use the signals from SEED database. Cross subjects emotions classification into neutral, positive and negative achieved an accuracy of 80% when using the proposed method.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
Alhagry S, 2017, INT J ADV COMPUT SC, V8, P355, DOI 10.14569/IJACSA.2017.081046
[2]  
Bos D. O., 2006, Influence of Visual Auditory Stimuli, V56, P1
[3]  
Brown L, 2011, IEEE ENG MED BIO, P2188, DOI 10.1109/IEMBS.2011.6090412
[4]   Accurate EEG-Based Emotion Recognition on Combined Features Using Deep Convolutional Neural Networks [J].
Chen, J. X. ;
Zhang, P. W. ;
Mao, Z. J. ;
Huang, Y. F. ;
Jiang, D. M. ;
Zhang, Andy N. .
IEEE ACCESS, 2019, 7 :44317-44328
[5]  
Duan RN, 2013, I IEEE EMBS C NEUR E, P81, DOI 10.1109/NER.2013.6695876
[6]   Toward an EEG-Based Recognition of Music Liking Using Time-Frequency Analysis [J].
Hadjidimitriou, Stelios K. ;
Hadjileontiadis, Leontios J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (12) :3498-3510
[7]  
Heraz A., 2007, INT J COMPUTER SCI, V2
[8]  
Li J, 2016, PROGNOST SYST HEALT
[9]   Human Emotion Recognition with Electroencephalographic Multidimensional Features by Hybrid Deep Neural Networks [J].
Li, Youjun ;
Huang, Jiajin ;
Zhou, Haiyan ;
Zhong, Ning .
APPLIED SCIENCES-BASEL, 2017, 7 (10)
[10]  
Li Z., 2018, INTERNET MULTIMEDIA, V819