Oxygen activation by the noncoupled binuclear copper site in peptidylglycine α-hydroxylating monooxygenase.: Reaction mechanism and role of the noncoupled nature of the active site

被引:245
作者
Chen, P [1 ]
Solomon, EI [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
关键词
D O I
10.1021/ja031564g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reaction thermodynamics and potential energy surfaces are calculated using density functional methods to investigate possible reactive Cu/O-2 species for H-atom abstraction in peptidylglycine a-hydroxylating monooxygenase (PHM), which has a noncoupled binuclear Cu active site. Two possible mononuclear Cu/O-2 species have been evaluated, the 2-electron reduced Cu-M(II)-OOH intermediate and the 1-electron reduced side-on Cu-M(II)-superoxo intermediate, which could form with comparable thermodynamics at the catalytic Cum site. The substrate H-atom abstraction reaction by the Cu-M(II)-OOH intermediate is found to be thermodynamically accessible due to the contribution of the methionine ligand, but with a high activation barrier (similar to37 kcal/mol, at a 3.0-Angstrom active site/substrate distance), arguing against the Cu-M(II)-OOH species as the reactive Cu/O-2 intermediate in PHM. In contrast, H-atom abstraction from substrate by the side-on Cu-M(II)-superoxo intermediate is a nearly isoenergetic process with a low reaction barrier at a comparable active site/substrate distance (similar to14 kcal/mol), suggesting that side-on Cu-M(II)-superoxo is the reactive species in PHM. The differential reactivities of the Cu-M(II)-OOH and Cu-M(II)-superoxo species correlate to their different frontier molecular orbitals involved in the H-atom abstraction reaction. After the H-atom abstraction, a reasonable pathway for substrate hydroxylation involves a "water-assisted" direct OH transfer to the substrate radical, which generates a high-energy Cu-M(II)-oxyl species. This provides the necessary driving force for intramolecular electron transfer from the Cu-H site to complete the reaction in PHM. The differential reactivity pattern between the Cu-M(II)-OOH and Cu-M(II)-superoxo intermediates provides insight into the role of the noncoupled nature of PHM and dopamine beta-monooxygenase active sites, as compared to the coupled binuclear Cu active sites in hemocyanin, tyrosinase, and catechol oxidase, in O-2 activation.
引用
收藏
页码:4991 / 5000
页数:10
相关论文
共 59 条
[1]   Snapshots of dioxygen activation by copper:: The structure of a 1:1 Cu/O2 adduct and its use in syntheses of asymmetric bis(μ-oxo) complexes [J].
Aboelella, NW ;
Lewis, EA ;
Reynolds, AM ;
Brennessel, WW ;
Cramer, CJ ;
Tolman, WB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (36) :10660-10661
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   Mechanistic investigation of peptidylglycine α-hydroxylating monooxygenase via intrinsic tryptophan fluorescence and mutagenesis [J].
Bell, J ;
El Meskini, R ;
D'Amato, D ;
Mains, RE ;
Eipper, BA .
BIOCHEMISTRY, 2003, 42 (23) :7133-7142
[4]   Major changes in copper coordination accompany reduction of peptidylglycine monooxygenase: implications for electron transfer and the catalytic mechanism [J].
Blackburn, NJ ;
Rhames, FC ;
Ralle, M ;
Jaron, S .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2000, 5 (03) :341-353
[5]  
BLACKBURN NJ, 1991, J BIOL CHEM, V266, P23120
[6]   Structural investigations on the coordination environment of the active-site copper centers of recombinant bifunctional peptidylglycine alpha-amidating enzyme [J].
Boswell, JS ;
Reedy, BJ ;
Kulathila, R ;
Merkler, D ;
Blackburn, NJ .
BIOCHEMISTRY, 1996, 35 (38) :12241-12250
[7]   Excited-state exchange coupling in bent Mn(III)-O-Mn(III) complexes:: Dominance of the π/σ superexchange pathway and its possible contributions to the reactivities of binuclear metalloproteins [J].
Brunold, TC ;
Gamelin, DR ;
Solomon, EI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (35) :8511-8523
[8]   Spectroscopic and theoretical studies of mononuclear copper(II) alkyl- and hydroperoxo complexes: Electronic structure contributions to reactivity [J].
Chen, P ;
Fujisawa, K ;
Solomon, EI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (41) :10177-10193
[9]   Spectroscopic and electronic structure studies of the diamagnetic side-on CuII-superoxo complex Cu(O2)[HB(3-R-5-iPrpz)3]:: Antiferromagnetic coupling versus covalent delocalization [J].
Chen, P ;
Root, DE ;
Campochiaro, C ;
Fujisawa, K ;
Solomon, EI .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (02) :466-474
[10]   Frontier molecular orbital analysis of Cun-O2 reactivity [J].
Chen, P ;
Solomon, EI .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2002, 88 (3-4) :368-374