Aperiodic propagation criteria for Boolean functions

被引:14
作者
Danielsen, Lars Eirik
Gulliver, T. Aaron
Parker, Matthew G.
机构
[1] Univ Bergen, Selmer Ctr, Dept Informat, N-5020 Bergen, Norway
[2] Univ Victoria, Dept Elect & Comp Engn, Victoria, BC V8W 3P6, Canada
关键词
propagation criteria; differential cryptanalysis; aperiodic autocorrelation; quantum error correcting codes; Boolean functions; graph theory; quantum entanglement;
D O I
10.1016/j.ic.2006.01.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We characterise the aperiodic autocorrelation for a Boolean function, f, and define the Aperiodic Propagation Criteria (APC) of degree l and order q. We establish the strong similarity between APC and the Extended Propagation Criteria as defined by Preneel et al. in 1991, although the criteria are not identical. We also show how aperiodic autocorrelation can be related to the first derivative off. We further propose the metric APC distance and show that quantum error correcting codes are natural candidates for Boolean functions with favourable APC distance. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:741 / 770
页数:30
相关论文
共 42 条
[1]  
[Anonymous], 1995, LNCS
[2]   Monotones and invariants for multi-particle quantum states [J].
Barnum, H ;
Linden, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6787-6805
[3]  
Barreto P., 2000, 1 OP NESSIE WORKSH L
[4]   GRAPHIC PRESENTATIONS OF ISOTROPIC SYSTEMS [J].
BOUCHET, A .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 45 (01) :58-76
[5]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[6]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[7]  
Canteaut A, 2002, LECT NOTES COMPUT SC, V2332, P518
[8]   Decomposing bent functions [J].
Canteaut, A ;
Charpin, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (08) :2004-2019
[9]   On cryptographic propagation criteria for Boolean functions [J].
Carlet, C .
INFORMATION AND COMPUTATION, 1999, 151 (1-2) :32-56
[10]  
Charpin P, 2003, LECT NOTES COMPUT SC, V2595, P175