A singular position-dependent mass particle in an infinite potential well

被引:40
|
作者
Mustafa, Omar [1 ]
Mazharimousavi, S. Habib [1 ]
机构
[1] Eastern Mediterranean Univ, Dept Phys, TR-10 N Cyprus, Mersin, Turkey
关键词
Position-dependent-mass; Point-canonical-transformation; Poschl-Teller potential; Ordering ambiguity; SCHRODINGER-EQUATION;
D O I
10.1016/j.physleta.2008.12.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An unusual singular position-dependent-mass particle in an infinite potential well is considered. The corresponding Hamiltonian is mapped through a point-canonical-transformation and an explicit correspondence between the target Hamiltonian and a Poschl-Teller type reference Hamiltonian is obtained. New ordering ambiguity parametric setting are suggested. (C) 2008 Published by Elsevier B.V.
引用
收藏
页码:325 / 327
页数:3
相关论文
共 50 条
  • [1] On the singular position-dependent mass
    Lima, F. C. E.
    Belchior, F. M.
    Almeida, C. A. S.
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [2] Information-theoretic measures for a position-dependent mass system in an infinite potential well
    da Costa, Bruno G.
    Gomez, Ignacio S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 541
  • [3] Quantum singular oscillator with potential controlled by position-dependent mass
    Jafarov, Elchin
    Nagiyev, Shakir
    TURKISH JOURNAL OF PHYSICS, 2024, 48 (06): : 153 - 178
  • [4] Coherent states of position-dependent mass trapped in an infinite square well
    Amir, Naila
    Iqbal, Shahid
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [5] The bound energy spectrum of position-dependent mass particle in the null potential
    Dai Man-Yuan
    Nie Yi-You
    Sang Ming-Huang
    Wang Xian-Ping
    Yin Cheng
    Cao Zhuang-Qi
    ACTA PHYSICA SINICA, 2010, 59 (11) : 7586 - 7590
  • [6] CYLINDRICAL QUANTUM WELL WITH POSITION-DEPENDENT MASS
    PEREZALVAREZ, R
    PARRASANTIAGO, JL
    PAJONSUAREZ, P
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1988, 147 (01): : 127 - 133
  • [7] Dynamics of a Quantum Particle with Discontinuous Position-Dependent Mass
    Sakbaev, V. G.
    Smolyanov, O. G.
    DOKLADY MATHEMATICS, 2010, 82 (01) : 630 - 633
  • [8] Geometric theory on the dynamics of a position-dependent mass particle
    Leonardo Casetta
    Acta Mechanica, 2016, 227 : 1519 - 1532
  • [9] Short note: Hamiltonian for a particle with position-dependent mass
    Morris J.R.
    Quantum Studies: Mathematics and Foundations, 2017, 4 (4) : 295 - 299
  • [10] Lie algebraic approach to singular oscillator with a position-dependent mass
    Roy, B
    EUROPHYSICS LETTERS, 2005, 72 (01): : 1 - 6