Excessive gluconeogenesis causes the hepatic insulin resistance paradox and its sequelae

被引:38
作者
Onyango, Arnold N. [1 ]
机构
[1] Jomo Kenyatta Univ Agr & Technol, Sch Food & Nutr Sci, POB 62000, Nairobi 00200, Kenya
关键词
Polyol pathway; Hexosamine biosynthetic pathway; Reactive oxygen species; Endoplasmic reticulum stress; Reductive stress; Reductive carboxylation; ENDOPLASMIC-RETICULUM STRESS; FATTY LIVER-DISEASE; STELLATE CELL ACTIVATION; DE-NOVO LIPOGENESIS; URIC-ACID; REDUCTIVE CARBOXYLATION; GLUTAMINE-METABOLISM; SREBP-1C ACTIVATION; GLUCOSE-PRODUCTION; SKELETAL-MUSCLE;
D O I
10.1016/j.heliyon.2022.e12294
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Hepatic insulin signaling suppresses gluconeogenesis but promotes de novo lipid synthesis. Para-doxically, hepatic insulin resistance (HIR) enhances both gluconeogenesis and de novo lipid synthesis. Elucidation of the etiology of this paradox, which participates in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, the metabolic syndrome and hepatocellular carcinoma, has not been fully achieved. Scope of review: This article briefly outlines the previously proposed hypotheses on the etiology of the HIR paradox. It then discusses literature consistent with an alternative hypothesis that excessive gluconeogenesis, the direct effect of HIR, is responsible for the aberrant lipogenesis. The mechanisms involved therein are explained, involving de novo synthesis of fructose and uric acid, promotion of glutamine anaplerosis, and induction of glucagon resistance. Thus, gluconeogenesis via lipogenesis promotes hepatic steatosis, a component of NAFLD, and dyslipidemia. Gluconeogenesis-centred mechanisms for the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis are suggested. That NAFLD often precedes and predicts type 2 diabetes is explained by the ability of lipogenesis to cushion against blood glucose dysregulation in the earlier stages of NAFLD. Major conclusions: HIR-induced excessive gluconeogenesis is a major cause of the HIR paradox and its sequelae. Such involvement of gluconeogenesis in lipid synthesis rationalizes the fact that several types of antidiabetic drugs ameliorate NAFLD. Thus, dietary, lifestyle and pharmacological targeting of HIR and hepatic gluconeo-genesis may be a most viable approach for the prevention and management of the HIR-associated network of diseases.
引用
收藏
页数:13
相关论文
共 154 条
[1]   Adipose tissue and insulin resistance in obese [J].
Ahmed, Bulbul ;
Sultana, Rifat ;
Greene, Michael W. .
BIOMEDICINE & PHARMACOTHERAPY, 2021, 137
[2]   The Liver-α-Cell Axis and Type 2 Diabetes [J].
Albrechtsen, Nicolai J. Wewer ;
Pedersen, Jens ;
Galsgaard, Katrine D. ;
Winther-Sorensen, Marie ;
Suppli, Make P. ;
Janah, Lina ;
Gromada, Jesper ;
Vilstrup, Hendrik ;
Knop, Filip K. ;
Holst, Jens J. .
ENDOCRINE REVIEWS, 2019, 40 (05) :1353-1366
[3]   INCREASED HEPATIC EFFICACY OF UREA SYNTHESIS FROM ALANINE IN INSULIN-DEPENDENT DIABETES-MELLITUS [J].
ALMDAL, TP ;
JENSEN, T ;
VILSTRUP, H .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 1990, 20 (01) :29-34
[4]   Glutamine/glutamate metabolism rewiring in reprogrammed human hepatocyte-like cells [J].
Ballester, Maria ;
Sentandreu, Enrique ;
Luongo, Giovanna ;
Santamaria, Ramon ;
Bolonio, Miguel ;
Isabel Alcoriza-Balaguer, Maria ;
Palomino-Schatzlein, Martina ;
Pineda-Lucena, Antonio ;
Castell, Jose ;
Lahoz, Agustin ;
Bort, Roque .
SCIENTIFIC REPORTS, 2019, 9 (1)
[5]   Pathogenesis of Prediabetes: Role of the Liver in Isolated Fasting Hyperglycemia and Combined Fasting and Postprandial Hyperglycemia [J].
Basu, Rita ;
Barosa, Cristina ;
Jones, John ;
Dube, Simmi ;
Carter, Rickey ;
Basu, Ananda ;
Rizza, Robert A. .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2013, 98 (03) :E409-E417
[6]   Insulin resistance in the liver: Deficiency or excess of insulin? [J].
Bazotte, Roberto B. ;
Silva, Lorena G. ;
Schiavon, Fabiana P. M. .
CELL CYCLE, 2014, 13 (16) :2494-2500
[7]   PEPCK1 Antisense Oligonucleotide Prevents Adiposity and Impairs Hepatic Glycogen Synthesis in High-Fat Male Fed Rats [J].
Beddow, Sara A. ;
Gattu, Arijeet K. ;
Vatner, Daniel F. ;
Paolella, Lauren ;
Alqarzaee, Abdulelah ;
Tashkandi, Nedda ;
Popov, Violeta B. ;
Church, Christopher D. ;
Rodeheffer, Matthew S. ;
Cline, Gary W. ;
Geisler, John G. ;
Bhanot, Sanjay ;
Samuel, Varman T. .
ENDOCRINOLOGY, 2019, 160 (01) :205-219
[8]   Functional Consequences of Metabolic Zonation in Murine Livers: Insights for an Old Story [J].
Berndt, Nikolaus ;
Kolbe, Erik ;
Gajowski, Robert ;
Eckstein, Johannes ;
Ott, Fritzi ;
Meierhofer, David ;
Holzhuetter, Hermann-Georg ;
Matz-Soja, Madlen .
HEPATOLOGY, 2021, 73 (02) :795-810
[9]   Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice [J].
Bhat, Neha ;
Narayanan, Anand ;
Fathzadeh, Mohsen ;
Kahn, Mario ;
Zhang, Dongyan ;
Goedeke, Leigh ;
Neogi, Arpita ;
Cardone, Rebecca L. ;
Kibbey, Richard G. ;
Fernandez-Hernando, Carlos ;
Ginsberg, Henry N. ;
Jain, Dhanpat ;
Shulman, Gerald, I ;
Mani, Arya .
JOURNAL OF CLINICAL INVESTIGATION, 2022, 132 (03)
[10]   Serum uric acid and insulin sensitivity in adolescents and adults with and without type 1 diabetes [J].
Bjornstad, Petter ;
Snell-Bergeon, Janet K. ;
McFann, Kimberly ;
Wadwa, R. Paul ;
Rewers, Marian ;
Rivard, Christopher J. ;
Jalal, Diana ;
Chonchol, Michel B. ;
Johnson, Richard J. ;
Maahs, David M. .
JOURNAL OF DIABETES AND ITS COMPLICATIONS, 2014, 28 (03) :298-304