Orthogonal matrix polynomials and quadrature formulas

被引:8
作者
Durán, AJ
Defez, E
机构
[1] Univ Seville, Dept Anal Matemat, Seville 41080, Spain
[2] Univ Politecn Valencia, Dept Matemat Aplicada, E-46071 Valencia, Spain
关键词
orthogonal matrix polynomial; quadrature formulas;
D O I
10.1016/S0024-3795(01)00474-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the nodes of a quadrature formula for a matrix weight with the highest degree of precision must necessarily be the zeros of a certain orthonormal matrix polynomial with respect to the matrix weight and the quadrature coefficients are then the coefficients in the partial fraction decomposition of the ratio between the inverse of this orthonormal matrix polynomial and the associated polynomial of the second kind. We also extend this result for quadrature formulas with degree of precision one unit smaller than the highest possible. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:71 / 84
页数:14
相关论文
共 10 条
[1]  
APTEKAREV AI, 1984, MATH USSR SB, V49, P325
[2]   MATRIX STIELTJES SERIES AND NETWORK MODELS [J].
BASU, S ;
BOSE, NK .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1983, 14 (02) :209-222
[3]   Ratio asymptotics for orthogonal matrix polynomials [J].
Duran, AJ .
JOURNAL OF APPROXIMATION THEORY, 1999, 100 (02) :304-344
[4]   Markov's theorem for orthogonal matrix polynomials [J].
Duran, AJ .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (06) :1180-1195
[5]   Orthogonal matrix polynomials: Zeros and Blumenthal's theorem [J].
Duran, AJ ;
LopezRodriguez, P .
JOURNAL OF APPROXIMATION THEORY, 1996, 84 (01) :96-118
[6]   Ratio asymptotics for orthogonal matrix polynomials with unbounded recurrence coefficients [J].
Duran, AJ ;
Daneri-Vias, E .
JOURNAL OF APPROXIMATION THEORY, 2001, 110 (01) :1-17
[7]   Density questions for the truncated matrix moment problem [J].
Duran, AJ ;
LopezRodriguez, P .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (04) :708-721
[8]   Zero asymptotic behaviour for orthogonal matrix polynomials [J].
Duran, AJ ;
Lopez-Rodriguez, P ;
Saff, EB .
JOURNAL D ANALYSE MATHEMATIQUE, 1999, 78 (1) :37-60
[9]  
Jodar L., 1996, J APPROX THEORY APPL, V12, P96
[10]   POLYNOMIAL INTERPOLATION AND GAUSSIAN QUADRATURE FOR MATRIX-VALUED FUNCTIONS [J].
SINAP, A ;
VANASSCHE, W .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 207 :71-114