Computation of all polynomial solutions of a class of nonlinear differential equations

被引:16
作者
Behloul, D
Cheng, SS
机构
[1] USTHB, Fac Genie Elect, Dept Informat, Algiers 16111, Algeria
[2] Hua Univ, Dept Math, Hsinchu 30043, Taiwan
关键词
nonlinear differential equation; polynomial solution; rational solution;
D O I
10.1007/s00607-005-0152-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A class of nonlinear differential equations is considered. We show that all their polynomial solutions can be computed in a systematic manner. Implementation of our method is also illustrated by means of Maple programs.
引用
收藏
页码:163 / 177
页数:15
相关论文
共 8 条
[1]  
ABRAMOV SA, P 1995 INT S SYMB AL, P290
[2]   On rational solutions of systems of linear differential equations [J].
Barkatou, MA .
JOURNAL OF SYMBOLIC COMPUTATION, 1999, 28 (4-5) :547-567
[3]   Integrating factors for second-order ODEs [J].
Cheb-Terrab, ES ;
Roche, AD .
JOURNAL OF SYMBOLIC COMPUTATION, 1999, 27 (05) :501-519
[4]   An Abel ordinary differential equation class generalizing known integrable classes [J].
Cheb-Terrab, ES ;
Roche, AD .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2003, 14 :217-229
[5]   Computer algebra solving of first order ODEs using symmetry methods [J].
ChebTerrab, ES ;
Duarte, LGS ;
daMota, LACP .
COMPUTER PHYSICS COMMUNICATIONS, 1997, 101 (03) :254-268
[6]   Exact solutions of iterative functional differential equations [J].
Cheng, SS ;
Talwong, S ;
Laohakosol, V .
COMPUTING, 2006, 76 (1-2) :67-76
[7]  
Liy W. R., 2001, APPL MATH E NOTES, V1, P1
[8]  
PIPEREVSKI BM, 1997, MAT BILTEN, V21, P21