Dominating sets in planar graphs

被引:56
作者
Matheson, LR
Tarjan, RE
机构
[1] NEC RES INST, PRINCETON, NJ 08540 USA
[2] PRINCETON UNIV, DEPT COMP SCI, PRINCETON, NJ 08544 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/eujc.1996.0048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by an application to unstructured multigrid calculations, we consider the problem of asymptotically minimizing the size of dominating sets in triangulated planar graphs. Specifically, we wish to find the smallest epsilon such that, for n sufficiently large, every n-vertex planar graph contains a dominating set of size at most epsilon n. We prove that 1/4 less than or equal to epsilon less than or equal to 1/3, and we conjecture that epsilon = 1/4. For triangulated discs we obtain a tight bound of epsilon = 1/3. The upper bound proof yields a linear-time algorithm for finding an (n/3)-size dominating set.
引用
收藏
页码:565 / 568
页数:4
相关论文
共 8 条
[1]   TESTING FOR CONSECUTIVE ONES PROPERTY, INTERVAL GRAPHS, AND GRAPH PLANARITY USING PQ-TREE ALGORITHMS [J].
BOOTH, KS ;
LUEKER, GS .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1976, 13 (03) :335-379
[2]   A LINEAR ALGORITHM FOR EMBEDDING PLANAR GRAPHS USING PQ-TREES [J].
CHIBA, N ;
NISHIZEKI, T ;
ABE, S ;
OZAWA, T .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1985, 30 (01) :54-76
[3]  
Dorward S. E., 1994, Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences. Vol.II: Software Technology (Cat. No.94TH0607-2), P169, DOI 10.1109/HICSS.1994.323268
[4]   EFFICIENT PLANARITY TESTING [J].
HOPCROFT, J ;
TARJAN, R .
JOURNAL OF THE ACM, 1974, 21 (04) :549-568
[5]  
Kant G., 1992, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Cat. No.92CH3188-0), P101, DOI 10.1109/SFCS.1992.267814
[6]  
MATHERSON LR, 1994, THESIS PRINCETON U
[7]  
MONDSHEIN LF, 1971, 197135 MIT
[8]   AN OPTIMAL PARALLEL ALGORITHM FOR GRAPH PLANARITY [J].
RAMACHANDRAN, V ;
REIF, J .
30TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1989, :282-287