Towards Attention-Based Convolutional Long Short-Term Memory for Travel Time Prediction of Bus Journeys

被引:25
|
作者
Wu, Jianqing [1 ]
Wu, Qiang [2 ]
Shen, Jun [1 ]
Cai, Chen [3 ]
机构
[1] Univ Wollongong, Sch Comp & Informat Technol, Wollongong, NSW 2522, Australia
[2] Lanzhou Univ, Sch Informat & Engn, Lanzhou 730000, Peoples R China
[3] CSIRO, Data 61, Eveleigh, NSW 2015, Australia
关键词
travel time prediction; bus journey; convolutional long short-term memory; attention mechanism; INTELLIGENT TRANSPORTATION SYSTEMS; DATA FUSION;
D O I
10.3390/s20123354
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Travel time prediction is critical for advanced traveler information systems (ATISs), which provides valuable information for enhancing the efficiency and effectiveness of the urban transportation systems. However, in the area of bus trips, existing studies have focused on directly using the structured data to predict travel time for a single bus trip. For state-of-the-art public transportation information systems, a bus journey generally has multiple bus trips. Additionally, due to the lack of study on data fusion, it is even inadequate for the development of underlying intelligent transportation systems. In this paper, we propose a novel framework for a hybrid data-driven travel time prediction model for bus journeys based on open data. We explore a convolutional long short-term memory (ConvLSTM) model with a self-attention mechanism that accurately predicts the running time of each segment of the trips and the waiting time at each station. The model is more robust to capture long-range dependence in time series data as well.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 50 条
  • [1] An attention-based recurrent learning model for short-term travel time prediction
    Chughtai, Jawad-ur-Rehman
    Ul Haq, Irfan
    Muneeb, Muhammad
    PLOS ONE, 2022, 17 (12):
  • [2] Attention-based long short-term memory network temperature prediction model
    Kun, Xiao
    Shan, Tian
    Yi, Tan
    Chao, Chen
    PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 278 - 281
  • [3] Urban Road Traffic Flow Prediction with Attention-Based Convolutional Bidirectional Long Short-Term Memory Networks
    Liu, Zhiquan
    Hu, Yao
    Ding, Xiangying
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (07) : 449 - 458
  • [4] Correlational graph attention-based Long Short-Term Memory network for multivariate time series prediction
    Han, Shuang
    Dong, Hongbin
    Teng, Xuyang
    Li, Xiaohui
    Wang, Xiaowei
    APPLIED SOFT COMPUTING, 2021, 106
  • [5] Can Eruptions Be Predicted? Short-Term Prediction of Volcanic Eruptions via Attention-Based Long Short-Term Memory
    Le, Hiep, V
    Murata, Tsuyoshi
    Iguchi, Masato
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13320 - 13325
  • [6] Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
    Xiong, Shanwei
    Zhou, Li
    Dai, Yiyang
    Ji, Xu
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 56 : 1 - 14
  • [7] Prediction of dengue cases using the attention-based long short-term memory (LSTM) approach
    Majeed, Mokhalad A.
    Shafri, Helmi Z. M.
    Wayayok, Aimrun
    Zulkafli, Zed
    GEOSPATIAL HEALTH, 2023, 18 (01)
  • [8] Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
    Shanwei Xiong
    Li Zhou
    Yiyang Dai
    Xu Ji
    Chinese Journal of Chemical Engineering, 2023, 56 (04) : 1 - 14
  • [9] Attention-based convolutional neural network and long short-term memory for short-term detection of mood disorders based on elicited speech responses
    Huang, Kun-Yi
    Wu, Chung-Hsien
    Su, Ming-Hsiang
    PATTERN RECOGNITION, 2019, 88 : 668 - 678
  • [10] Bus Travel Speed Prediction Using Long Short-term Memory Neural Network
    Jeon, Seung-Bae
    Jeong, Myeong-Hun
    Lee, Tae-Young
    Lee, Jeong-Hwan
    Cho, Jae-Myoung
    SENSORS AND MATERIALS, 2020, 32 (12) : 4441 - 4447