Property Pnaive for acylindrically hyperbolic groups

被引:0
作者
Abbott, Carolyn R. [1 ]
Dahmani, Francois [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Grenoble Alpes, Inst Fourier, Grenoble, France
关键词
Acylindrically hyperbolic groups; delta-hyperbolic spaces; C*-algebras; Free subgroups; Ping-pong lemma; Property P-naive;
D O I
10.1007/s00209-018-2094-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every acylindrically hyperbolic group that has no non-trivial finite normal subgroup satisfies a strong ping pong property, the P-naive property: for any finite collection of elements h(1),...,h(k), there exists another element gamma not equal 1 such that for all i, < h(i), gamma > = < hi > * <gamma >. We also show that if a collection of subgroups H-1,...,H-k is a hyperbolically embedded collection, then there is gamma not equal 1 such that for all i, < H-i, gamma > = < Hi >*<gamma >.
引用
收藏
页码:555 / 568
页数:14
相关论文
共 16 条
[1]   Non-noetherian groups and primitivity of their group algebras [J].
Alexander, James ;
Nishinaka, Tsunekazu .
JOURNAL OF ALGEBRA, 2017, 473 :221-246
[2]   Relatively hyperbolic groups are C*-simple [J].
Arzhantseva, G. ;
Minasyan, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 243 (01) :345-351
[3]  
BALOGUN BO, 1984, PROC AM MATH SOC, V106, P43, DOI DOI 10.1090/S0002-9939-1989-0963570-6
[4]  
BEKKA M, 1927, INST HAUTES ETUDES S, V80, P117, DOI DOI 10.1007/BF02698898
[5]   CONSTRUCTING GROUP ACTIONS ON QUASI-TREES AND APPLICATIONS TO MAPPING CLASS GROUPS [J].
Bestvina, Mladen ;
Bromberg, Ken ;
Fujiwara, Koji .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122) :1-64
[6]   Tight geodesics in the curve complex [J].
Bowditch, Brian H. .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :281-300
[7]   C*-simplicity and the unique trace property for discrete groups [J].
Breuillard, Emmanuel ;
Kalantar, Mehrdad ;
Kennedy, Matthew ;
Ozawa, Narutaka .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01) :35-71
[8]  
Dahmani F., 2017, MEM AM MATH SOC, V245, P1156
[9]  
de la Harpe P., 1988, C R ACAD SCI PARIS S, V307, P771
[10]   GROUP RINGS OF FREE PRODUCTS ARE PRIMITIVE [J].
FORMANEK, E .
JOURNAL OF ALGEBRA, 1973, 26 (03) :508-511