Regularity estimates in weighted Orlicz spaces for Calderon-Zygmund type singular integral operators

被引:1
作者
Yao, Fengping [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Orlicz spaces; weighted; regularity; Calderon-Zygmund; singular integral; SOBOLEV SPACES; ELLIPTIC-EQUATIONS; PARABOLIC-SYSTEMS; GRADIENT;
D O I
10.1515/forum-2015-0086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain regularity estimates in weighted Orlicz spaces for the Calderon-Zygmund singular integral operators under certain optimal conditions.
引用
收藏
页码:187 / 199
页数:13
相关论文
共 26 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]  
[Anonymous], 1986, PURE APPL MATH
[3]  
[Anonymous], 2003, SOBOLEV SPACES
[4]  
[Anonymous], 1991, Weighted Inequalities in Lorentz and Orlicz Spaces
[5]   An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces [J].
Benkirane, A ;
Elmahi, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (01) :11-24
[6]   The regularity of general parabolic systems with degenerate diffusion [J].
Boegelein, Verena ;
Duzaar, Frank ;
Mingione, Giuseppe .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 221 (1041) :1-143
[7]  
Bögelein V, 2011, PUBL MAT, V55, P201
[8]   Parabolic systems with measurable coefficients in weighted Orlicz spaces [J].
Byun, Sun-Sig ;
Ok, Jihoon ;
Palagachev, Dian K. ;
Softova, Lubomira G. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (02)
[9]   Weighted W1,p estimates for solutions of non-linear parabolic equations over non-smooth domains [J].
Byun, Sun-Sig ;
Palagachev, Dian K. ;
Ryu, Seungjin .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 :765-778
[10]   Global weighted estimates for the gradient of solutions to nonlinear elliptic equations [J].
Byun, Sun-Sig ;
Ryu, Seungjin .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (02) :291-313