A log-Sobolev type inequality for free entropy of two projections

被引:9
作者
Hiai, Fumio [1 ]
Ueda, Yoshimichi [2 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, Sendai, Miyagi 9808579, Japan
[2] Kyushu Univ, Grad Sch Math, Fukuoka 8108560, Japan
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2009年 / 45卷 / 01期
基金
日本学术振兴会;
关键词
Logarithmic Sobolev inequality; Free entropy; Mutual free Fisher information; FREE PROBABILITY-THEORY; FISHER INFORMATION MEASURE; ANALOGS;
D O I
10.1214/08-AIHP164
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a kind of logarithmic Sobolev inequality claiming that the mutual free Fisher information dominates the microstate free entropy adapted to projections in the case of two projections.
引用
收藏
页码:239 / 249
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[2]  
[Anonymous], 1992, American Mathematical Soc.
[3]  
Bakry D., 1985, LECT NOTES MATH, V1123
[4]   Logarithmic Sobolev inequalities, matrix models and free entropy [J].
Biane, P .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2003, 19 (03) :497-506
[5]   Large deviation bounds for matrix Brownian motion [J].
Biane, P ;
Capitaine, M ;
Guionnet, A .
INVENTIONES MATHEMATICAE, 2003, 152 (02) :433-459
[6]  
Biane P., 1997, Fields Inst. Commun., V12, P1
[7]   Product of random projections, Jacobi ensembles and universality problems arising from free probability [J].
Collins, B .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (03) :315-344
[8]  
GALLOT S., 1990, Riemannian Geometry, V2nd
[9]  
Hiai F., 2000, The Semicircle Law, Free Random Variables and Entropy
[10]  
Hiai F, 2006, ACTA SCI MATH, V72, P581